Theoretical and Experimental Investigation of an Externally Pressurized Porous Annular Thrust Gas Bearing and Its Optimal Design

Static and dynamic characteristics of an externally pressurized porous annular thrust gas bearing (PATGB ), which has a thin restricted surface layer, are investigated by numerical analysis and experiment. In the analysis, it is assumed that the fluid flow obeys Darcy's law in the porous material, restricted with Darcy's restrictor (Darcy-Darcy model) or orifice restrictor (Darcy-Orifice model) in the surface layer. From experimental investigation, it is found that the theoretical results calculated by the Darcy-Darcy model agree with the experimental data better than those of the Darcy-Orifice model. Based on the Darcy-Darcy model, the unique relationships among the design parameters, which can provide the maximum damping ratio, were derived as functions of feeding parameter under the conditions of allowable static stiffness and the local minimum dynamic stiffness. Considering the dimensionless mass of the body supported by the bearing, an optimal design method is proposed to maximize the damping ratio at the natural frequency, while maintaining the required stiffness in the low frequency region.