On the Intermediate Symbol Recovery Rate of Rateless Codes

Existing rateless codes have low intermediate symbol recovery rates (ISRR). Therefore, we first design new rateless codes with close to optimal ISRR employing genetic algorithms. Next, we assume an estimate of the channel erasure rate is available and propose an algorithm to further improve the ISRR of the designed codes.

[1]  Saejoon Kim,et al.  Improved intermediate performance of rateless codes , 2009, 2009 11th International Conference on Advanced Communication Technology.

[2]  Sujay Sanghavi Intermediate Performance of Rateless Codes , 2007, 2007 IEEE Information Theory Workshop.

[3]  P. Maymounkov Online codes , 2002 .

[4]  Amin Shokrollahi,et al.  New model for rigorous analysis of LT-codes , 2006, 2006 IEEE International Symposium on Information Theory.

[5]  Nazanin Rahnavard,et al.  Rateless Codes with Optimum Intermediate Performance , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[6]  Nazanin Rahnavard,et al.  Efficient symbol sorting for high intermediate recovery rate of LT codes , 2010, 2010 IEEE International Symposium on Information Theory.

[7]  Jon Feldman,et al.  Growth codes: maximizing sensor network data persistence , 2006, SIGCOMM 2006.

[8]  Michael Mitzenmacher,et al.  Analysis of random processes via And-Or tree evaluation , 1998, SODA '98.

[9]  Richard M. Karp,et al.  Finite length analysis of LT codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[10]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[11]  Ramakrishna Gummadi,et al.  Relaying a fountain code across multiple nodes , 2008, 2008 IEEE Information Theory Workshop.

[12]  Nazanin Rahnavard,et al.  Rateless Codes With Unequal Error Protection Property , 2007, IEEE Transactions on Information Theory.

[13]  Nazanin Rahnavard,et al.  Generalization of Rateless Codes for Unequal Error Protection and Recovery Time: Asymptotic Analysis , 2006, 2006 IEEE International Symposium on Information Theory.

[14]  A. Beimel,et al.  RT Oblivious Erasure Correcting , 2004, IEEE/ACM Transactions on Networking.

[15]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[16]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..