Introduction to time series and forecasting

Preface 1 INTRODUCTION 1.1 Examples of Time Series 1.2 Objectives of Time Series Analysis 1.3 Some Simple Time Series Models 1.3.3 A General Approach to Time Series Modelling 1.4 Stationary Models and the Autocorrelation Function 1.4.1 The Sample Autocorrelation Function 1.4.2 A Model for the Lake Huron Data 1.5 Estimation and Elimination of Trend and Seasonal Components 1.5.1 Estimation and Elimination of Trend in the Absence of Seasonality 1.5.2 Estimation and Elimination of Both Trend and Seasonality 1.6 Testing the Estimated Noise Sequence 1.7 Problems 2 STATIONARY PROCESSES 2.1 Basic Properties 2.2 Linear Processes 2.3 Introduction to ARMA Processes 2.4 Properties of the Sample Mean and Autocorrelation Function 2.4.2 Estimation of $\gamma(\cdot)$ and $\rho(\cdot)$ 2.5 Forecasting Stationary Time Series 2.5.3 Prediction of a Stationary Process in Terms of Infinitely Many Past Values 2.6 The Wold Decomposition 1.7 Problems 3 ARMA MODELS 3.1 ARMA($p,q$) Processes 3.2 The ACF and PACF of an ARMA$(p,q)$ Process 3.2.1 Calculation of the ACVF 3.2.2 The Autocorrelation Function 3.2.3 The Partial Autocorrelation Function 3.3 Forecasting ARMA Processes 1.7 Problems 4 SPECTRAL ANALYSIS 4.1 Spectral Densities 4.2 The Periodogram 4.3 Time-Invariant Linear Filters 4.4 The Spectral Density of an ARMA Process 1.7 Problems 5 MODELLING AND PREDICTION WITH ARMA PROCESSES 5.1 Preliminary Estimation 5.1.1 Yule-Walker Estimation 5.1.3 The Innovations Algorithm 5.1.4 The Hannan-Rissanen Algorithm 5.2 Maximum Likelihood Estimation 5.3 Diagnostic Checking 5.3.1 The Graph of $\t=1,\ldots,n\ 5.3.2 The Sample ACF of the Residuals

[1]  Henry L. Gray,et al.  A New Approach to ARMA Modeling. , 1978 .

[2]  D. Mage An Objective Graphical Method for Testing Normal Distributional Assumptions using Probability Plots , 1982 .

[3]  Quang Phuc Duong,et al.  ON THE CHOICE OF THE ORDER OF AUTOREGRESSIVE MODELS: A RANKING AND SELECTION APPROACH , 1984 .

[4]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[5]  A. Bergstrom Continuous Time Econometric Modelling. , 1992 .

[6]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[7]  A. Kuk,et al.  The monte carlo newton-raphson algorithm , 1997 .

[8]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[9]  George E. P. Box,et al.  Intervention Analysis with Applications to Economic and Environmental Problems , 1975 .

[10]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[11]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[12]  Richard H. Jones MULTIVARIATE AUTOREGRESSION ESTIMATION USING RESIDUALS , 1978 .

[13]  D. Cochrane,et al.  Application of Least Squares Regression to Relationships Containing Auto-Correlated Error Terms , 1949 .

[14]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[15]  W. Fuller,et al.  Distribution of the Estimators for Autoregressive Time Series with a Unit Root , 1979 .

[16]  M. Stella Atkins A Case Study on the Use of Intervention Analysis Applied to Traffic Accidents , 1979 .

[17]  P. Brockwell On continuous-time threshold ARMA processes , 1994 .

[18]  G. Box,et al.  Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models , 1970 .

[19]  E. Hannan,et al.  Recursive estimation of mixed autoregressive-moving average order , 1982 .

[20]  A. Raftery,et al.  Prediction Rules for Exponential Family State Space Models , 1993 .

[21]  A. I. McLeod,et al.  DIAGNOSTIC CHECKING ARMA TIME SERIES MODELS USING SQUARED‐RESIDUAL AUTOCORRELATIONS , 1983 .

[22]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[23]  C. Granger,et al.  Co-integration and error correction: representation, estimation and testing , 1987 .

[24]  K. Chan,et al.  Monte Carlo EM Estimation for Time Series Models Involving Counts , 1995 .

[25]  Richard A. Davis,et al.  TIME‐REVERSIBILITY, IDENTIFIABILITY AND INDEPENDENCE OF INNOVATIONS FOR STATIONARY TIME SERIES , 1992 .

[26]  O. Barndorff-Nielsen Information And Exponential Families , 1970 .

[27]  Richard A. Davis,et al.  Maximum Likelihood Estimation for MA(1) Processes with a Root on or near the Unit Circle , 1996, Econometric Theory.

[28]  C. Granger Some properties of time series data and their use in econometric model specification , 1981 .

[29]  Howell Tong,et al.  A NOTE ON EMBEDDING A DISCRETE PARAMETER ARMA MODEL IN A CONTINUOUS PARAMETER ARMA MODEL , 1987 .

[30]  V. Makhankov Existence and Stability , 1990 .

[31]  Anil K. Bera,et al.  Efficient tests for normality, homoscedasticity and serial independence of regression residuals , 1980 .

[32]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[33]  Allan P. Layton,et al.  Effectiveness of Seat Belt Legislation on the Queensland Road Toll—An Australian Case Study in Intervention Analysis , 1979 .

[34]  Hugh G. Campbell Matrices With Applications , 1968 .

[35]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[36]  Richard A. Davis,et al.  Inference for MA (1) processes with a root on or near the unit circle , 1992 .

[37]  C. Chatfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[38]  E. Hannan The Estimation of the Order of an ARMA Process , 1980 .

[39]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[40]  Leo A. Aroian,et al.  The Forecasting Accuracy of Major Time Series , 1985 .