Clique-width and edge contraction

We prove that edge contractions do not preserve the property that a set of graphs has bounded clique-width. Edge contractions can increase clique-width and rank-width.Using monadic second-order graph transductions to prove that certain graphs have unbounded clique-width.An alternative proof is given using vertex-minors.Taking induced topological minors preserves bounded clique-width.

[1]  Bruno Courcelle,et al.  Monadic Second-Order Definable Graph Transductions: A Survey , 1994, Theor. Comput. Sci..

[2]  Vadim V. Lozin,et al.  Recent developments on graphs of bounded clique-width , 2009, Discret. Appl. Math..

[3]  Pinar Heggernes,et al.  Graphs of linear clique-width at most 3 , 2011, Theor. Comput. Sci..

[4]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[5]  Stefan Rümmele,et al.  Multicut on Graphs of Bounded Clique-Width , 2012, COCOA.

[6]  Udi Rotics,et al.  Polynomial-time recognition of clique-width ≤3 graphs , 2012, Discret. Appl. Math..

[7]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[8]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[9]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[10]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..

[11]  Vít Jelínek The rank-width of the square grid , 2010, Discret. Appl. Math..

[12]  Georg Gottlob,et al.  Width Parameters Beyond Tree-width and their Applications , 2008, Comput. J..

[13]  Frank Gurski,et al.  The Behavior of Clique-Width under Graph Operations and Graph Transformations , 2017, Theory of Computing Systems.

[14]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[15]  Vít Jelínek The Rank-Width of the Square Grid , 2008, WG.

[16]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[17]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[18]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.