Recent applications of UHF‐MRI in the study of human brain function and structure: a review

The increased availability of ultra‐high‐field (UHF) MRI has led to its application in a wide range of neuroimaging studies, which are showing promise in transforming fundamental approaches to human neuroscience. This review presents recent work on structural and functional brain imaging, at 7 T and higher field strengths. After a short outline of the effects of high field strength on MR images, the rapidly expanding literature on UHF applications of blood‐oxygenation‐level‐dependent‐based functional MRI is reviewed. Structural imaging is then discussed, divided into sections on imaging weighted by relaxation time, including quantitative relaxation time mapping, phase imaging and quantitative susceptibility mapping, angiography, diffusion‐weighted imaging, and finally magnetization‐transfer imaging. The final section discusses studies using the high spatial resolution available at UHF to identify explicit links between structure and function. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  G. Sapiro,et al.  Comprehensive in vivo Mapping of the Human Basal Ganglia and Thalamic Connectome in Individuals Using 7T MRI , 2012, PloS one.

[2]  Oliver Speck,et al.  The impact of physiological noise correction on fMRI at 7 T , 2011, NeuroImage.

[3]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[4]  C. Schwarzbauer,et al.  MDEFT imaging of the human brain at 8 T , 1999, Magnetic Resonance Materials in Physics, Biology and Medicine.

[5]  Peter J. Koopmans,et al.  Whole brain, high resolution multiband spin-echo EPI fMRI at 7T: A comparison with gradient-echo EPI using a color-word Stroop task , 2014, NeuroImage.

[6]  Robert Turner,et al.  Myelin and iron concentration in the human brain: A quantitative study of MRI contrast , 2014, NeuroImage.

[7]  Oliver Speck,et al.  Cortical thickness determination of the human brain using high resolution 3T and 7T MRI data , 2013, NeuroImage.

[8]  S Maderwald,et al.  The human hippocampus at 7 T—In vivo MRI , 2009, Hippocampus.

[9]  Max C. Keuken,et al.  Quantifying inter-individual anatomical variability in the subcortex using 7T structural MRI , 2014, NeuroImage.

[10]  Jürgen Hennig Ultra high field MR: useful instruments or toys for the boys , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[11]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[12]  Stefan Maderwald,et al.  Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: A 7T fMRI study , 2012, NeuroImage.

[13]  Robert Turner,et al.  Do the congenitally blind have a stria of Gennari? First intracortical insights in vivo. , 2010, Cerebral cortex.

[14]  Nick F. Ramsey,et al.  Patterns of resting state connectivity in human primary visual cortical areas: A 7T fMRI study , 2014, NeuroImage.

[15]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[16]  R. Goebel,et al.  Cortical Depth Dependent Functional Responses in Humans at 7T: Improved Specificity with 3D GRASE , 2013, PloS one.

[17]  Robert Turner,et al.  Anatomical brain imaging at 7T using two‐dimensional GRASE , 2014, Magnetic resonance in medicine.

[18]  Angela D. Friederici,et al.  An anterior–posterior gradient of cognitive control within the dorsomedial striatum , 2012, NeuroImage.

[19]  Michael Wyss,et al.  Quantification of subcortical gray-matter vascularization using 7 Tesla time-of-flight angiography , 2013, Brain and behavior.

[20]  Jörn Diedrichsen,et al.  Evidence for a motor somatotopy in the cerebellar dentate nucleus—An FMRI study in humans , 2012, Human brain mapping.

[21]  Bruce R. Rosen,et al.  Investigating the Capability to Resolve Complex White Matter Structures with High b-Value Diffusion Magnetic Resonance Imaging on the MGH-USC Connectom Scanner , 2014, Brain Connect..

[22]  Daniel C. Alexander,et al.  Structure Tensor Informed Fiber Tractography (STIFT) by combining gradient echo MRI and diffusion weighted imaging , 2012, NeuroImage.

[23]  R. Goebel,et al.  High-Resolution Mapping of Myeloarchitecture In Vivo: Localization of Auditory Areas in the Human Brain. , 2015, Cerebral cortex.

[24]  Marta Bianciardi,et al.  Investigation of BOLD fMRI resonance frequency shifts and quantitative susceptibility changes at 7 T , 2014, Human brain mapping.

[25]  J. Voges,et al.  Direct Visualization of Anatomic Subfields within the Superior Aspect of the Human Lateral Thalamus by MRI at 7T , 2014, American Journal of Neuroradiology.

[26]  Wietske van der Zwaag,et al.  In vivo Structural Imaging of the Cerebellum, the Contribution of Ultra-High Fields , 2010, The Cerebellum.

[27]  Richard Bowtell,et al.  Investigating the effect of blood susceptibility on phase contrast in the human brain , 2010, NeuroImage.

[28]  Nick F. Ramsey,et al.  BOLD matches neuronal activity at the mm scale: A combined 7T fMRI and ECoG study in human sensorimotor cortex , 2014, NeuroImage.

[29]  Claus Lamm,et al.  Comparing neural response to painful electrical stimulation with functional MRI at 3 and 7T , 2013, NeuroImage.

[30]  Lawrence L. Wald,et al.  Effect of spatial smoothing on physiological noise in high-resolution fMRI , 2006, NeuroImage.

[31]  Thomas R. Knösche,et al.  k-space and q-space: Combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7T , 2012, NeuroImage.

[32]  Peter R Luijten,et al.  High‐resolution magnetization‐prepared 3D‐FLAIR imaging at 7.0 Tesla , 2010, Magnetic resonance in medicine.

[33]  P. Gowland,et al.  Simultaneous quantification of T2 and T′2 using a combined gradient echo‐spin echo sequence at ultrahigh field , 2010, Magnetic resonance in medicine.

[34]  P. Figueiredo,et al.  Signal fluctuations in fMRI data acquired with 2D-EPI and 3D-EPI at 7 Tesla. , 2013, Magnetic resonance imaging.

[35]  Klaus Scheffler,et al.  Ultra-high resolution imaging of the human brain using acquisition-weighted imaging at 9.4T , 2014, NeuroImage.

[36]  Essa Yacoub,et al.  Spatial organization of frequency preference and selectivity in the human inferior colliculus , 2012, Nature Communications.

[37]  Klaus Scheffler,et al.  Functional quantitative susceptibility mapping (fQSM) , 2012, NeuroImage.

[38]  Johannes T Heverhagen,et al.  Phase contrast and time-of-flight magnetic resonance angiography of the intracerebral arteries at 1.5, 3 and 7 T. , 2013, Magnetic resonance imaging.

[39]  Hans-Joachim Mentzel,et al.  Investigations on the effect of caffeine on cerebral venous vessel contrast by using susceptibility-weighted imaging (SWI) at 1.5, 3 and 7 T , 2008, NeuroImage.

[40]  Robert Turner,et al.  Introduction to the NeuroImage Special Issue: “In vivo Brodmann mapping of the human brain” , 2014, NeuroImage.

[41]  R. Bowtell,et al.  Susceptibility mapping in the human brain using threshold‐based k‐space division , 2010, Magnetic resonance in medicine.

[42]  Yi Wang,et al.  Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker , 2014, Magnetic resonance in medicine.

[43]  Peter R Luijten,et al.  Generalized multiple-layer appearance of the cerebral cortex with 3D FLAIR 7.0-T MR imaging. , 2012, Radiology.

[44]  Gary F. Egan,et al.  Using carbogen for calibrated fMRI at 7Tesla: Comparison of direct and modelled estimation of the M parameter , 2014, NeuroImage.

[45]  Rolf Gruetter,et al.  A modulated closed form solution for quantitative susceptibility mapping — A thorough evaluation and comparison to iterative methods based on edge prior knowledge , 2015, NeuroImage.

[46]  Richard S. J. Frackowiak,et al.  Human Primary Auditory Cortex Follows the Shape of Heschl's Gyrus , 2011, The Journal of Neuroscience.

[47]  Robin M Heidemann,et al.  Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging , 2005, Magnetic resonance in medicine.

[48]  Zang-Hee Cho,et al.  Non‐invasive visualization of basilar artery perforators with 7T MR angiography , 2010, Journal of magnetic resonance imaging : JMRI.

[49]  R. Bowtell,et al.  Fiber orientation-dependent white matter contrast in gradient echo MRI , 2012, Proceedings of the National Academy of Sciences.

[50]  Robert Turner,et al.  High-Resolution MR Imaging of the Human Brainstem In vivo at 7 Tesla , 2013, Front. Hum. Neurosci..

[51]  Ali R. Khan,et al.  In vivo normative atlas of the hippocampal subfields using multi‐echo susceptibility imaging at 7 Tesla , 2014, Human brain mapping.

[52]  X. Zhang,et al.  In vivo blood T1 measurements at 1.5 T, 3 T, and 7 T , 2013, Magnetic resonance in medicine.

[53]  Manojkumar Saranathan,et al.  Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T , 2014, NeuroImage.

[54]  K. Uğurbil,et al.  Manipulation of image intensity distribution at 7.0 T: Passive RF shimming and focusing with dielectric materials , 2006, Journal of magnetic resonance imaging : JMRI.

[55]  Tobias Kober,et al.  Dielectric pads and low‐ B1+ adiabatic pulses: Complementary techniques to optimize structural T1w whole‐brain MP2RAGE scans at 7 tesla , 2014, Journal of magnetic resonance imaging : JMRI.

[56]  Baxter P. Rogers,et al.  Improving measurement of functional connectivity through decreasing partial volume effects at 7T , 2012, NeuroImage.

[57]  Stefan Maderwald,et al.  Activation of the dentate nucleus in a verb generation task: A 7T MRI study , 2011, NeuroImage.

[58]  Oded Gonen,et al.  Human hippocampal subfields in young adults at 7.0 T: feasibility of imaging. , 2010, Radiology.

[59]  Stefan Maderwald,et al.  Memory‐Related Hippocampal Activity Can Be Measured Robustly Using fMRI at 7 Tesla , 2013, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[60]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[61]  Jaco J. M. Zwanenburg,et al.  Perforating arteries originating from the posterior communicating artery: a 7.0-Tesla MRI study , 2009, European Radiology.

[62]  P A Bottomley,et al.  RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. , 1978, Physics in medicine and biology.

[63]  Denis Schluppeck,et al.  Event‐related fMRI at 7T reveals overlapping cortical representations for adjacent fingertips in S1 of individual subjects , 2013, Human brain mapping.

[64]  P. Röschmann Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging. , 1987, Medical physics.

[65]  Oliver Speck,et al.  The molecular basis for gray and white matter contrast in phase imaging , 2008, NeuroImage.

[66]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[67]  Siegfried Trattnig,et al.  A study-specific fMRI normalization approach that operates directly on high resolution functional EPI data at 7Tesla , 2014, NeuroImage.

[68]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[69]  Andreas Schäfer,et al.  Using magnetic field simulation to study susceptibility-related phase contrast in gradient echo MRI , 2009, NeuroImage.

[70]  Petra Schmalbrock,et al.  Enhanced gray and white matter contrast of phase susceptibility‐weighted images in ultra‐high‐field magnetic resonance imaging , 2003, Journal of magnetic resonance imaging : JMRI.

[71]  S. Francis,et al.  Within-Digit Functional Parcellation of Brodmann Areas of the Human Primary Somatosensory Cortex Using Functional Magnetic Resonance Imaging at 7 Tesla , 2012, The Journal of Neuroscience.

[72]  Josef Pfeuffer,et al.  Isotropic submillimeter fMRI in the human brain at 7 T: Combining reduced field‐of‐view imaging and partially parallel acquisitions , 2012, Magnetic resonance in medicine.

[73]  Jeff H. Duyn,et al.  Making the most of fMRI at 7 T by suppressing spontaneous signal fluctuations , 2009, NeuroImage.

[74]  Essa Yacoub,et al.  Functional mapping of the magnocellular and parvocellular subdivisions of human LGN , 2014, NeuroImage.

[75]  Jeroen Hendrikse,et al.  Noninvasive Depiction of the Lenticulostriate Arteries with Time-of-Flight MR Angiography at 7.0 T , 2008, Cerebrovascular Diseases.

[76]  Wietske van der Zwaag,et al.  High resolution SE-fMRI in humans at 3 and 7 T using a motor task , 2007, Magnetic Resonance Materials in Physics, Biology and Medicine.

[77]  J. Duyn,et al.  Nonexponential T2* decay in white matter , 2012, Magnetic resonance in medicine.

[78]  Jaco J. M. Zwanenburg,et al.  Fluid attenuated inversion recovery (FLAIR) MRI at 7.0 Tesla: comparison with 1.5 and 3.0 Tesla , 2009, European Radiology.

[79]  R. Gruetter,et al.  Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T , 2016, Magnetic resonance in medicine.

[80]  Ihar Volkau,et al.  Comparison of Magnetic Resonance Angiography Scans on 1.5, 3, and 7 Tesla Units: A Quantitative Study of 3‐Dimensional Cerebrovasculature , 2013, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[81]  K. Scheffler,et al.  Hyperechoes , 2001, Magnetic resonance in medicine.

[82]  Jeff H. Duyn,et al.  Improving contrast to noise ratio of resonance frequency contrast images (phase images) using balanced steady-state free precession , 2011, NeuroImage.

[83]  N. Ramsey,et al.  BOLD Specificity and Dynamics Evaluated in Humans at 7 T: Comparing Gradient-Echo and Spin-Echo Hemodynamic Responses , 2013, PloS one.

[84]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[85]  Jeroen van der Grond,et al.  Combined magnitude and phase‐based segmentation of the cerebral cortex in 7T MR images of the elderly , 2012, Journal of magnetic resonance imaging : JMRI.

[86]  Daniel L. Polders,et al.  Signal to noise ratio and uncertainty in diffusion tensor imaging at 1.5, 3.0, and 7.0 Tesla , 2011, Journal of magnetic resonance imaging : JMRI.

[87]  Mayur Narsude,et al.  Comparison of an 8-Channel and a 32-Channel Coil for High-Resolution fMRI at 7 T , 2013, Brain Topography.

[88]  David G Norris,et al.  Power independent of number of slices (PINS) radiofrequency pulses for low‐power simultaneous multislice excitation , 2011, Magnetic resonance in medicine.

[89]  Rolf Gruetter,et al.  New Developments and Applications of the MP2RAGE Sequence - Focusing the Contrast and High Spatial Resolution R1 Mapping , 2013, PloS one.

[90]  Robert Turner,et al.  A simple low‐SAR technique for chemical‐shift selection with high‐field spin‐echo imaging , 2010, Magnetic resonance in medicine.

[91]  R. Goebel,et al.  Processing of Natural Sounds: Characterization of Multipeak Spectral Tuning in Human Auditory Cortex , 2013, The Journal of Neuroscience.

[92]  B. P. Klein,et al.  Topographic Representation of Numerosity in the Human Parietal Cortex , 2013, Science.

[93]  Robert Turner,et al.  Slice accelerated diffusion‐weighted imaging at ultra‐high field strength , 2014, Magnetic resonance in medicine.

[94]  D. Yablonskiy,et al.  Biophysical mechanisms of phase contrast in gradient echo MRI , 2009, Proceedings of the National Academy of Sciences.

[95]  Richard Bowtell,et al.  Whole-brain susceptibility mapping at high field: A comparison of multiple- and single-orientation methods , 2010, NeuroImage.

[96]  André J. W. van der Kouwe,et al.  Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7T , 2014, NeuroImage.

[97]  Rolf Gruetter,et al.  Improving T2‐weighted imaging at high field through the use of kT‐points , 2014, Magnetic resonance in medicine.

[98]  David Saloner,et al.  Intracranial time‐of‐flight MR angiography at 7T with comparison to 3T , 2007, Journal of magnetic resonance imaging : JMRI.

[99]  Robert Turner,et al.  Analysis of RF transmit performance for a 7T dual row multichannel MRI loop array , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[100]  Klaus Scheffler,et al.  Functional MRI in human subjects with gradient‐echo and spin‐echo EPI at 9.4 T , 2014, Magnetic resonance in medicine.

[101]  B. Forstmann,et al.  A gradual increase of iron toward the medial‐inferior tip of the subthalamic nucleus , 2014, Human brain mapping.

[102]  Richard Bowtell,et al.  Gradient echo based fiber orientation mapping using R2* and frequency difference measurements , 2013, NeuroImage.

[103]  Max A. Viergever,et al.  MR venography of the human brain using susceptibility weighted imaging at very high field strength , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[104]  Jeff H. Duyn,et al.  The contribution of myelin to magnetic susceptibility-weighted contrasts in high-field MRI of the brain , 2012, NeuroImage.

[105]  R. Goebel,et al.  Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex , 2003, Neuron.

[106]  Essa Yacoub,et al.  Magnetic Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity Networks , 2013, Brain Connect..

[107]  K. Uğurbil,et al.  Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz , 2004, Journal of magnetic resonance imaging : JMRI.

[108]  Oliver Speck,et al.  Phase contrast imaging in neonates , 2011, NeuroImage.

[109]  Jun Hua,et al.  Whole‐brain three‐dimensional T2‐weighted BOLD functional magnetic resonance imaging at 7 Tesla , 2014, Magnetic resonance in medicine.

[110]  Peter G. Morris,et al.  fMRI at 1.5, 3 and 7 T: Characterising BOLD signal changes , 2009, NeuroImage.

[111]  Xu Li,et al.  Mapping magnetic susceptibility anisotropies of white matter in vivo in the human brain at 7T , 2012, NeuroImage.

[112]  Jeff H. Duyn,et al.  Susceptibility contrast in high field MRI of human brain as a function of tissue iron content , 2009, NeuroImage.

[113]  A. Kangarlu,et al.  High resolution MRI of the deep brain vascular anatomy at 8 Tesla: susceptibility-based enhancement of the venous structures. , 1999, Journal of computer assisted tomography.

[114]  Chunlei Liu Susceptibility tensor imaging , 2010, Magnetic resonance in medicine.

[115]  G H Glover,et al.  Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR , 2000, Magnetic resonance in medicine.

[116]  A. Connelly,et al.  Super‐resolution track‐density imaging of thalamic substructures: Comparison with high‐resolution anatomical magnetic resonance imaging at 7.0T , 2013, Human brain mapping.

[117]  D. Hoult Sensitivity and Power Deposition in a High‐Field Imaging Experiment , 2000, Journal of magnetic resonance imaging : JMRI.

[118]  Alexis Amadon,et al.  Parallel-transmission-enabled magnetization-prepared rapid gradient-echo T1-weighted imaging of the human brain at 7T , 2012, NeuroImage.

[119]  Jeff H. Duyn,et al.  Extensive heterogeneity in white matter intensity in high-resolution T2 *-weighted MRI of the human brain at 7.0 T , 2006, NeuroImage.

[120]  Rolf Pohmann,et al.  Human imaging at 9.4 T using T2*‐, phase‐, and susceptibility‐weighted contrast , 2011, Magnetic resonance in medicine.

[121]  Rolf Gruetter,et al.  Investigation of high-resolution functional magnetic resonance imaging by means of surface and array radiofrequency coils at 7 T. , 2009, Magnetic resonance imaging.

[122]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[123]  Hugo J. Kuijf,et al.  Subfields of the hippocampal formation at 7T MRI: In vivo volumetric assessment , 2012, NeuroImage.

[124]  Andrew G Webb,et al.  Quantitative assessment of the effects of high‐permittivity pads in 7 Tesla MRI of the brain , 2012, Magnetic resonance in medicine.

[125]  Stefan Maderwald,et al.  High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves? , 2014, Neuroradiology.

[126]  Robert Turner,et al.  Comparing Like with Like: The Power of Knowing Where You Are , 2014, Brain Connect..

[127]  Gabriele Lohmann,et al.  Parcellation of human amygdala in vivo using ultra high field structural MRI , 2011, NeuroImage.

[128]  S. Francis,et al.  Correspondence of human visual areas identified using functional and anatomical MRI in vivo at 7 T , 2012, Journal of magnetic resonance imaging : JMRI.

[129]  Richard Bowtell,et al.  T2* measurements in human brain at 1.5, 3 and 7 T. , 2007, Magnetic resonance imaging.

[130]  Peter R Luijten,et al.  Intracranial Vessel Wall Imaging at 7.0-T MRI , 2011, Stroke.

[131]  Anja G. van der Kolk,et al.  Feasibility of high-resolution pituitary MRI at 7.0 tesla , 2014, European Radiology.

[132]  Essa Yacoub,et al.  Spin echo functional MRI in bilateral auditory cortices at 7T: An application of B1 shimming , 2012, NeuroImage.

[133]  Cristina Granziera,et al.  Cerebellar Cortical Layers : In Vivo Visualization with Structural High-Field-Strength MR Imaging 1 , 2010 .

[134]  Richard Bowtell,et al.  Effects of White Matter Microstructure on Phase and Susceptibility Maps , 2014, Magnetic resonance in medicine.

[135]  R. Turner,et al.  Microstructural Parcellation of the Human Cerebral Cortex – From Brodmann's Post-Mortem Map to in vivo Mapping with High-Field Magnetic Resonance Imaging , 2011, Front. Hum. Neurosci..

[136]  A. Kangarlu,et al.  Ultra high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K. , 2000, Journal of computer assisted tomography.

[137]  Tobias Voigt,et al.  Electrical Properties Tomography in the Human Brain at 1.5, 3, and 7T: A Comparison Study , 2014, Magnetic resonance in medicine.

[138]  Jack L. Gallant,et al.  Natural Scene Statistics Account for the Representation of Scene Categories in Human Visual Cortex , 2013, Neuron.

[139]  Richard B. Buxton,et al.  A New Functional MRI Approach for Investigating Modulations of Brain Oxygen Metabolism , 2013, PloS one.

[140]  Lawrence L. Wald,et al.  Three dimensional echo-planar imaging at 7 Tesla , 2010, NeuroImage.

[141]  Tonio Ball,et al.  Visualization of the amygdalo–hippocampal border and its structural variability by 7T and 3T magnetic resonance imaging , 2014, Human brain mapping.

[142]  S. Francis,et al.  Mapping human somatosensory cortex in individual subjects with 7 T functional MRI 1 Running title : Mapping human somatosensory cortex , 2010 .

[143]  Essa Yacoub,et al.  Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla , 2007, NeuroImage.

[144]  Duan Xu,et al.  Reduced field-of-view diffusion-weighted imaging of the brain at 7 T. , 2010, Magnetic resonance imaging.

[145]  Gaël Latour,et al.  In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy , 2011, Biomedical optics express.

[146]  Peter Andersen,et al.  9.4T human MRI: Preliminary results , 2006, Magnetic resonance in medicine.

[147]  Damien J. Mannion,et al.  Consequences of polar form coherence for fMRI responses in human visual cortex , 2013, NeuroImage.

[148]  Essa Yacoub,et al.  Encoding of Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory Cortex , 2014, PLoS Comput. Biol..

[149]  Gary F. Egan,et al.  Regional reproducibility of calibrated BOLD functional MRI: Implications for the study of cognition and plasticity , 2014, NeuroImage.

[150]  Oliver Bieri,et al.  Triple‐echo steady‐state T2 relaxometry of the human brain at high to ultra‐high fields , 2014, NMR in biomedicine.

[151]  Elia Formisano,et al.  An anatomical and functional topography of human auditory cortical areas , 2014, Front. Neurosci..

[152]  P. Robitaille,et al.  Macroscopic susceptibility in ultra high field MRI. , 1999, Journal of computer assisted tomography.

[153]  Robert Turner,et al.  Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T , 2014, NeuroImage.

[154]  C. Schwarzbauer,et al.  Human rapid acquisition with relaxation enhancement imaging at 8 T without specific absorption rate violation , 1999, Magnetic Resonance Materials in Physics, Biology and Medicine.

[155]  Jeff H. Duyn,et al.  High-field MRI of brain cortical substructure based on signal phase , 2007, Proceedings of the National Academy of Sciences.

[156]  Robert Turner,et al.  Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2 ⁎-imaging at ultra-high magnetic field strength , 2013, NeuroImage.

[157]  A. Kangarlu,et al.  Human magnetic resonance imaging at 8 T , 1998, NMR in biomedicine.

[158]  Steen Moeller,et al.  T 1 weighted brain images at 7 Tesla unbiased for Proton Density, T 2 ⁎ contrast and RF coil receive B 1 sensitivity with simultaneous vessel visualization , 2009, NeuroImage.

[159]  Maxim Zaitsev,et al.  An embedded optical tracking system for motion-corrected magnetic resonance imaging at 7T , 2012, Magnetic Resonance Materials in Physics, Biology and Medicine.

[160]  Pierre-Yves Hervé,et al.  Structural properties of the corticospinal tract in the human brain: a magnetic resonance imaging study at 7 Tesla , 2011, Brain Structure and Function.

[161]  Peter J. Koopmans,et al.  BOLD fMRI signal characteristics of S1- and S2-SSFP at 7 Tesla , 2014, Front. Neurosci..

[162]  B. Forstmann,et al.  Direct visualization of the subthalamic nucleus and its iron distribution using high‐resolution susceptibility mapping , 2012, Human brain mapping.

[163]  Jeroen Hendrikse,et al.  MR angiography of the cerebral perforating arteries with magnetization prepared anatomical reference at 7T: Comparison with time‐of‐flight , 2008, Journal of magnetic resonance imaging : JMRI.

[164]  R. Goebel,et al.  Mapping the Organization of Axis of Motion Selective Features in Human Area MT Using High-Field fMRI , 2011, PloS one.

[165]  Yu-Chung N. Cheng,et al.  Susceptibility weighted imaging (SWI) , 2004, Zeitschrift fur medizinische Physik.

[166]  Robert Turner,et al.  Diffusion imaging in humans at 7T using readout‐segmented EPI and GRAPPA , 2010, Magnetic resonance in medicine.

[167]  Daniel Pflugfelder,et al.  On the numerically predicted spatial BOLD fMRI specificity for spin echo sequences. , 2011, Magnetic resonance imaging.

[168]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[169]  Jeff H. Duyn,et al.  T2*-based fiber orientation mapping , 2011, NeuroImage.

[170]  Julien Cohen-Adad,et al.  T2* mapping and B0 orientation-dependence at 7T reveal cyto- and myeloarchitecture organization of the human cortex , 2012, NeuroImage.

[171]  Juliane Dinse,et al.  A computational framework for ultra-high resolution cortical segmentation at 7Tesla , 2014, NeuroImage.

[172]  Zang-Hee Cho,et al.  Functional MR angiography with 7.0 T Is direct observation of arterial response during neural activity possible? , 2008, NeuroImage.

[173]  Karsten Mueller,et al.  The functional architecture of S1 during touch observation described with 7 T fMRI , 2013, Brain Structure and Function.

[174]  Mayur Narsude,et al.  Improved temporal resolution for functional studies with reduced number of segments with three‐dimensional echo planar imaging , 2014, Magnetic resonance in medicine.

[175]  Blake D. Niederhauser,et al.  High‐resolution 7T MRI of the human hippocampus in vivo , 2008, Journal of magnetic resonance imaging : JMRI.

[176]  Jeff H. Duyn,et al.  The contribution of chemical exchange to MRI frequency shifts in brain tissue , 2011, Magnetic resonance in medicine.

[177]  R. Turner,et al.  High‐resolution MRI and diffusion‐weighted imaging of the human habenula at 7 tesla , 2014, Journal of magnetic resonance imaging : JMRI.

[178]  Kenji Ito,et al.  Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T. , 2014, Medical physics.

[179]  K. Uğurbil,et al.  Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo , 2007, Magnetic resonance in medicine.

[180]  Peter J. Koopmans,et al.  Multi-echo fMRI of the cortical laminae in humans at 7T , 2011, NeuroImage.

[181]  Olaf Blanke,et al.  Human finger somatotopy in areas 3b, 1, and 2: A 7T fMRI study using a natural stimulus , 2014, Human brain mapping.

[182]  R. Turner,et al.  Tracking the Unconscious Generation of Free Decisions Using UItra-High Field fMRI , 2011, PloS one.

[183]  J. Duyn,et al.  Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data , 2009, Magnetic resonance in medicine.

[184]  Natalia Petridou,et al.  Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla , 2015, Magnetic resonance in medicine.

[185]  Reginald B. Adams,et al.  A 7 Tesla fMRI Study of Amygdala Responses to Fearful Faces , 2012, Brain Topography.

[186]  Mark E Ladd,et al.  Caudal image contrast inversion in MPRAGE at 7 Tesla: problem and solution. , 2012, Academic radiology.

[187]  Siegfried Trattnig,et al.  The veins of the nucleus dentatus: Anatomical and radiological findings , 2011, NeuroImage.

[188]  Matilde Inglese,et al.  Double Inversion Recovery MRI with Fat Suppression at 7 Tesla: Initial Experience , 2010, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[189]  Feng Xia,et al.  Introduction to , 2015, ACM Trans. Multim. Comput. Commun. Appl..

[190]  G. Kranz,et al.  High-resolution functional MRI of the human amygdala at 7 T , 2013, European journal of radiology.

[191]  Steen Moeller,et al.  B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil , 2005, Magnetic resonance in medicine.

[192]  Tiejun Zhao,et al.  Dual‐echo arteriovenography imaging with 7T MRI , 2010, Journal of magnetic resonance imaging : JMRI.

[193]  K. Uğurbil,et al.  An Assessment of Current Brain Targets for Deep Brain Stimulation Surgery With Susceptibility-Weighted Imaging at 7 Tesla , 2010, Neurosurgery.

[194]  John C Gore,et al.  Localized high-resolution DTI of the human midbrain using single-shot EPI, parallel imaging, and outer-volume suppression at 7T. , 2013, Magnetic resonance imaging.

[195]  M. Fukunaga,et al.  Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure , 2010, Proceedings of the National Academy of Sciences.

[196]  John C Gore,et al.  Distinct fine‐scale fMRI activation patterns of contra‐ and ipsilateral somatosensory areas 3b and 1 in humans , 2014, Human brain mapping.

[197]  Aurélien Massire,et al.  Parallel‐transmission‐enabled three‐dimensional T2‐weighted imaging of the human brain at 7 Tesla , 2015, Magnetic resonance in medicine.

[198]  Lawrence L. Wald,et al.  Fast quantitative susceptibility mapping with L1‐regularization and automatic parameter selection , 2013, Magnetic resonance in medicine.

[199]  Stefan Maderwald,et al.  fMRI at 7 T: Whole-brain coverage and signal advantages even infratentorially? , 2007, NeuroImage.

[200]  Scott D. Brown,et al.  Cortico-striatal connections predict control over speed and accuracy in perceptual decision making , 2010, Proceedings of the National Academy of Sciences.

[201]  Karla L. Miller,et al.  Detecting microstructural properties of white matter based on compartmentalization of magnetic susceptibility , 2013, NeuroImage.

[202]  Peter J. Koopmans,et al.  Application of PINS radiofrequency pulses to reduce power deposition in RARE/turbo spin echo imaging of the human head , 2014, Magnetic resonance in medicine.

[203]  Alain Pitiot,et al.  Magnetization transfer phenomenon in the human brain at 7 T , 2010, NeuroImage.

[204]  Alain Pitiot,et al.  High‐resolution imaging of magnetisation transfer and nuclear Overhauser effect in the human visual cortex at 7 T , 2013, NMR in biomedicine.

[205]  Wietske van der Zwaag,et al.  Digit somatotopy in the human cerebellum: A 7T fMRI study , 2013, NeuroImage.

[206]  M. Zaitsev,et al.  High resolution single-shot EPI at 7T , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[207]  M. E. Ladd,et al.  Magnetic Resonance Imaging of Cranial Nerves at 7 Tesla , 2012, Clinical Neuroradiology.

[208]  Richard Bowtell,et al.  Regional structural differences across functionally parcellated Brodmann areas of human primary somatosensory cortex , 2014, NeuroImage.

[209]  Lee M. Miller,et al.  Tuning In to Sound: Frequency-Selective Attentional Filter in Human Primary Auditory Cortex , 2013, The Journal of Neuroscience.

[210]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[211]  Julien Cohen-Adad,et al.  Identification of discrete functional subregions of the human periaqueductal gray , 2013, Proceedings of the National Academy of Sciences.

[212]  Oliver Kraff,et al.  To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[213]  Myung-Ho In,et al.  Distortion correction in EPI at ultra‐high‐field MRI using PSF mapping with optimal combination of shift detection dimension , 2012, Magnetic resonance in medicine.

[214]  B. Forstmann,et al.  Ultra-High 7T MRI of Structural Age-Related Changes of the Subthalamic Nucleus , 2012, The Journal of Neuroscience.

[215]  Wietske van der Zwaag,et al.  Tonotopic Gradients in Human Primary Auditory Cortex: Concurring Evidence From High-Resolution 7 T and 3 T fMRI , 2014, Brain Topography.

[216]  Jörn Diedrichsen,et al.  Evidence for a motor and a non-motor domain in the human dentate nucleus — An fMRI study , 2011, NeuroImage.

[217]  Jan Sedlacik,et al.  Susceptibility weighted imaging at ultra high magnetic field strengths: Theoretical considerations and experimental results , 2008, Magnetic resonance in medicine.

[218]  Alan Connelly,et al.  Track density imaging (TDI): Validation of super resolution property , 2011, NeuroImage.

[219]  Lawrence L. Wald,et al.  Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters , 2005, NeuroImage.