Micellar solubilization of drugs.

PURPOSE Micellar solubilization is a powerful alternative for dissolving hydrophobic drugs in aqueous environments. In this work, we provide an insight into this subject. METHODS A concise review of surfactants and micelles applications in pharmacy was carried out. RESULTS Initially, a description of surfactants and aqueous micellar systems is presented. Following, an extensive review on micellar drug solubilization, including both the principles involved on this phenomenon and the work already done regarding solubilization of drugs by micelles is presented. The application of micelles in drug delivery, in order to minimize drug degradation and loss, to prevent harmful side effects, and to increase drug bioavailability, is also presented. Special emphasis is given to the more recent use of polymeric micelles. Finally, we briefly discuss the importance of surfactants and micelles as biological systems models as well as its application in micellar catalysis. CONCLUSIONS As can be seen from the review presented, the use of micelles in pharmacy is an important tool that finds numerous applications.

[1]  M. Yokoyama Block copolymers as drug carriers. , 1992, Critical reviews in therapeutic drug carrier systems.

[2]  S. Palma,et al.  Drugs solubilization in ascorbyl–decanoate micellar solutions , 2003 .

[3]  H. Chakraborty,et al.  Incorporation of NSAIDs in micelles: implication of structural switchover in drug-membrane interaction. , 2003, Biophysical chemistry.

[4]  Donald W. Miller,et al.  Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies. , 2001, The Journal of pharmacology and experimental therapeutics.

[5]  R. S. Schechter,et al.  Solubilization of Aromatic Solutes in Block Copolymers , 1995 .

[6]  Ping Li,et al.  Solubilization of flurbiprofen in pH-surfactant solutions. , 2003, Journal of pharmaceutical sciences.

[7]  S. Yalkowsky,et al.  Solubilization of ionized and un-ionized flavopiridol by ethanol and polysorbate 20. , 1999, Journal of pharmaceutical sciences.

[8]  P. C. Hiemenz,et al.  Principles of colloid and surface chemistry , 1977 .

[9]  I. Grillo,et al.  Electrostatic Self-Assembly of Oppositely Charged Copolymers and Surfactants: A Light, Neutron, and X-ray Scattering Study , 2004 .

[10]  N. Melik-Nubarov,et al.  The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles , 1989, FEBS letters.

[11]  S. Yalkowsky,et al.  Relationship between polysorbate 80 solubilization descriptors and octanol-water partition coefficients of drugs. , 2000, International journal of pharmaceutics.

[12]  J Moan,et al.  Interaction of cremophor EL with human plasma. , 1991, International Journal of Biochemistry.

[13]  B. W. Barry,et al.  Solubilization of hydrocortisone, dexamethasone, testosterone and progesterone by long‐chain polyoxyethylene surfactants , 1976, The Journal of pharmacy and pharmacology.

[14]  M. Lúcio,et al.  Partition and location of nimesulide in EPC liposomes: a spectrophotometric and fluorescence study , 2003, Analytical and bioanalytical chemistry.

[15]  Afsaneh Lavasanifar,et al.  Amphiphilic block copolymers for drug delivery. , 2003, Journal of pharmaceutical sciences.

[16]  A. Windebank,et al.  Potential neurotoxicity of the solvent vehicle for cyclosporine. , 1994, The Journal of pharmacology and experimental therapeutics.

[17]  F. Menger,et al.  Chemistry of reactions proceeding inside molecular aggregates , 1967 .

[18]  M. Tabak,et al.  Charge- and pH-dependent binding sites for dibucaine in ionic micelles: a fluorescence study. , 1994, Biochimica et biophysica acta.

[19]  P. Mukerjee,et al.  Benzene derivatives and naphthalene solubilized in micelles. Polarity of microenvironments, location and distribution in micelles, and correlation with surface activity in hydrocarbon-water systems , 1978 .

[20]  G. Dutt Rotational Diffusion of Hydrophobic Probes in Brij-35 Micelles: Effect of Temperature on Micellar Internal Environment , 2003 .

[21]  Glen S. Kwon,et al.  Methotrexate Esters of Poly(Ethylene Oxide)-Block-Poly(2-Hydroxyethyl-L-Aspartamide). Part I: Effects of the Level of Methotrexate Conjugation on the Stability of Micelles and on Drug Release , 2000, Pharmaceutical Research.

[22]  A. Eisenberg,et al.  Incorporation and Release of Hydrophobic Probes in Biocompatible Polycaprolactone-block-poly(ethylene oxide) Micelles: Implications for Drug Delivery , 2002 .

[23]  K. Kataoka,et al.  Block copolymer micelles for drug delivery: design, characterization and biological significance. , 2001, Advanced drug delivery reviews.

[24]  T. Aida,et al.  Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[25]  John Samuel,et al.  Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. , 2002, Advanced drug delivery reviews.

[26]  Teruo Okano,et al.  Polymeric micelles as new drug carriers , 1996 .

[27]  B. Ninham,et al.  Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers , 1976 .

[28]  S. S. Davis,et al.  Toxicity of Solubilized and Colloidal Amphotericin B Formulations to Human Erythrocytes , 1988, The Journal of pharmacy and pharmacology.

[29]  S. Rubio,et al.  Organic microheterogeneous systems in kinetic analysis. Self-assembled systems. A review , 1996 .

[30]  Si‐qing Cheng,et al.  Comparative Reactivities of Metal Cation‐Catalyzed Hydrolysis of p‐Nitrophenyl Picolinate in Micellar Solutions , 2003 .

[31]  John T. H. Ong,et al.  Micellar Solubilization of Timobesone Acetate in Aqueous and Aqueous Propylene Glycol Solutions of Nonionic Surfactants , 1988, Pharmaceutical Research.

[32]  A S Hoffman,et al.  An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[33]  Alexander T. Florence,et al.  Physicochemical Principles of Pharmacy , 1988 .

[34]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[35]  L. C. Tavares,et al.  Micellar solubilization of ibuprofen: influence of surfactant head groups on the extent of solubilization , 2005 .

[36]  Alexander V. Kabanov,et al.  A new class of drug carriers: micelles of poly(oxyethylene)-poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain☆ , 1992 .

[37]  T. Okano,et al.  Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. , 1991, Cancer research.

[38]  M. Suwalsky,et al.  Interaction of the Anticancer Drug Tamoxifen with the Human Erythrocyte Membrane and Molecular Models , 1998, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[39]  D. Piszkiewicz Cooperativity in bimolecular micelle-catalyzed reactions. Inhibition of catalysis by high concentrations of detergent , 1977 .

[40]  C. H. Walker The Hydrophobic Effect: Formation of Micelles and Biological Membranes , 1981 .

[41]  G. Zografi,et al.  Surface activity of chlorpromazine and chlorpromazine sulfoxide in the presence of insoluble monomolecular films. , 1965, Journal of pharmaceutical sciences.

[42]  Kozo Nakamura,et al.  Polyion complex micelles from plasmid DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency. , 2003, Biomaterials.

[43]  G. Buckton,et al.  Dissolution behaviour of sulphonamides into sodium dodecyl sulfate micelles: a thermodynamic approach. , 1996, Journal of pharmaceutical sciences.

[44]  M. Jones,et al.  Polymeric micelles - a new generation of colloidal drug carriers. , 1999, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[45]  T. Okano,et al.  Biodistribution of Micelle-Forming Polymer–Drug Conjugates , 1993, Pharmaceutical Research.

[46]  K. L. Mittal,et al.  Micellization, solubilization, and microemulsions , 1977 .

[47]  Kazunori Kataoka,et al.  Block copolymer micelles as long-circulating drug vehicles , 1995 .

[48]  A. Olesen,et al.  Complement-mediated reactions to diazepam with Cremophor as solvent (Stesolid MR). , 1980, British journal of anaesthesia.

[49]  Alex Sparreboom,et al.  Role of Formulation Vehicles in Taxane Pharmacology , 2001, Investigational New Drugs.

[50]  G. Schmid,et al.  Introduction to Modern Colloid Science , 1995 .

[51]  V. Torchilin,et al.  Which polymers can make nanoparticulate drug carriers long-circulating? , 1995 .

[52]  J. Watkins,et al.  Adverse reactions to intravenous anaesthetic induction agents. , 1977, British medical journal.

[53]  M. Tunçay,et al.  Micellar effects and reactant incorporation in reduction of toluidine blue by ascorbic acid , 2005 .

[54]  M. Tabak,et al.  Chlorpromazine and sodium dodecyl sulfate mixed micelles investigated by small angle X-ray scattering. , 2002, Journal of colloid and interface science.

[55]  Naoki Kanayama,et al.  Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system: their preparation and gene transfecting efficiency against cultured HepG2 cells. , 2004, Journal of Controlled Release.

[56]  D. Flanagan,et al.  Micellar Solubilization of a New Antimalarial Drug, β-Arteether , 1989 .

[57]  S. Lin,et al.  Kinetic studies on the stability of indomethacin in alkaline aqueous solution containing poly(oxyethylene)poly(oxypropylene) surface-active block copolymers. , 1985, Pharmaceutica acta Helvetiae.

[58]  Joseph D. Andrade,et al.  Blood compatibility of polyethylene oxide surfaces , 1995 .

[59]  Alexander T. Florence,et al.  Surfactant Systems: Their chemistry, pharmacy and biology , 1983 .

[60]  T. Okano,et al.  Preparation of micelle-forming polymer-drug conjugates. , 1992, Bioconjugate chemistry.

[61]  A. Kabanov,et al.  Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. , 1996, British Journal of Cancer.

[62]  J. Israelachvili Intermolecular and surface forces , 1985 .

[63]  D. Chapman,et al.  Micelles, Monolayers, and Biomembranes , 1994 .

[64]  A. Dash,et al.  Micellar effects upon the reactions of complex ions in solution. Part 4.—Kinetics of aquation and base hydrolysis of some cis-(chloro)(amine)bis(ethylenediamine)cobalt(III) complexes in the presence of neutral and anionic surfactants in an aqueous medium , 1990 .

[65]  J. W. Wilson,et al.  Taxol: a history of pharmaceutical development and current pharmaceutical concerns. , 1993, Journal of the National Cancer Institute. Monographs.

[66]  V. Torchilin,et al.  Biodegradable long-circulating polymeric nanospheres. , 1994, Science.

[67]  J. M. Ford,et al.  Pharmacology of drugs that alter multidrug resistance in cancer. , 1990, Pharmacological reviews.

[68]  P. Worsfold,et al.  The use of microemulsions in flow injection analysis , 1986 .

[69]  K. Kataoka,et al.  Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde. , 2004, Bioconjugate chemistry.

[70]  Daniel Dexter,et al.  An investigation of the antitumour activity and biodistribution of polymeric micellar paclitaxel , 1997, Cancer Chemotherapy and Pharmacology.

[71]  V. Torchilin How do polymers prolong circulation time of liposomes , 1996 .

[72]  J Verweij,et al.  Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. , 1999, Cancer research.

[73]  N. Nishiyama,et al.  Cisplatin‐incorporated Polymeric Micelles Eliminate Nephrotoxicity, While Maintaining Antitumor Activity , 2001, Japanese journal of cancer research : Gann.

[74]  J Verweij,et al.  Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. , 2001, European journal of cancer.

[75]  Theresa M. Allen,et al.  Pharmacokinetics of long-circulating liposomes , 1995 .

[76]  V. Torchilin,et al.  Structure and design of polymeric surfactant-based drug delivery systems. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[77]  G. Prestwich,et al.  Intracellular uptake and trafficking of Pluronic micelles in drug-sensitive and MDR cells: effect on the intracellular drug localization. , 2002, Journal of pharmaceutical sciences.

[78]  A. Kabanov,et al.  Interpolyelectrolyte and block ionomer complexes for gene delivery: physico-chemical aspects. , 1998, Advanced drug delivery reviews.

[79]  P. Caliceti,et al.  New synthetic amphiphilic polymers for steric protection of liposomes in vivo. , 1995, Journal of pharmaceutical sciences.

[80]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[81]  Y. Sugiyama,et al.  Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. , 2003, Cancer research.

[82]  D. Kessel,et al.  The alteration of plasma lipoproteins by cremophor EL. , 1994, Journal of photochemistry and photobiology. B, Biology.

[83]  Todd P. McGee,et al.  The membranes of cells (2nd edn): by P.L. Yeagle, Academic Press, 1993. £58.00 (349 pages) ISBN 0 12 769041 7 , 1994 .

[84]  A. Kabanov,et al.  Block and Graft Copolymers and Nanogel™ Copolymer Networks for DNA Delivery into Cell , 2000, Journal of drug targeting.

[85]  A. G. Oliveira,et al.  Piroxicam encapsulated in liposomes: characterization and in vivo evaluation of topical anti-inflammatory effect. , 1999, Drug development and industrial pharmacy.

[86]  M. J. Rosen Surfactants and Interfacial Phenomena , 1978 .

[87]  M. Fresta,et al.  Combining molecular modeling with experimental methodologies: mechanism of membrane permeation and accumulation of ofloxacin. , 2002, Bioorganic & medicinal chemistry.

[88]  M. Abe,et al.  Replacement reaction of diazonium salt in the presence of sodium dodecyl sulfate micelles , 1983 .

[89]  Khouloud A. Alkhamis,et al.  Study of the solubilization of gliclazide by aqueous micellar solutions. , 2003, Journal of pharmaceutical sciences.

[90]  T. N. Palmer,et al.  The mechanism of liposome accumulation in infarction. , 1984, Biochimica et biophysica acta.

[91]  J. R. Perussi,et al.  Ionization and binding equilibria of papaverine in ionic micelles studied by 1H NMR and optical absorption spectroscopy. , 1994, Biophysical chemistry.

[92]  M. Tabak,et al.  Interaction of chlorpromazine and trifluoperazine with ionic micelles: electronic absorption spectroscopy studies , 1999 .

[93]  Y. Chevalier,et al.  The structure of micelles and microemulsions , 1990 .

[94]  K. M. Davies,et al.  Micellar Catalysis of Nitric Oxide Dissociation from Diazeniumdiolates , 2003 .

[95]  D. Blankschtein,et al.  Molecular‐thermodynamic approach to predict micellization, phase behavior and phase separation of micellar solutions. I. Application to nonionic surfactants , 1990 .

[96]  Kabir-ud-din,et al.  Oxidative degradation of L(+)arabinose by chromium(VI) in absence and presence of sodium dodecyl sulphate and TX-100 micelles , 2003 .

[97]  K. Mortensen PEO-related block copolymer surfactants , 2001 .