暂无分享,去创建一个
Hao Peng | Xiaoli Bai | Hao Peng | X. Bai
[1] Yuesheng Xu,et al. Universal Kernels , 2006, J. Mach. Learn. Res..
[2] P. Kuchynka,et al. The Planetary and Lunar Ephemerides DE430 and DE431 , 2014 .
[3] T. S. Cssi Kelso,et al. Analysis of the Iridium 33 Cosmos 2251 Collision , 2009 .
[4] T. S. Kelso,et al. Revisiting Spacetrack Report #3 , 2006 .
[5] Hsuan-Tien Lin,et al. Learning From Data , 2012 .
[6] James Bennett,et al. Experimental results of debris orbit predictions using sparse tracking data from Mt. Stromlo , 2014 .
[7] J. Lemoine,et al. A new release of EIGEN-6: The latest combined global gravity field model including LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse , 2012 .
[8] Chris Sabol,et al. Comparison of Covariance Based Track Association Approaches Using Simulated Radar Data , 2012 .
[9] John W. Tukey,et al. Exploratory Data Analysis. , 1979 .
[10] Michael R Pearlman,et al. THE INTERNATIONAL LASER RANGING SERVICE , 2007 .
[11] Simo Särkkä,et al. State-Space Inference for Non-Linear Latent Force Models with Application to Satellite Orbit Prediction , 2012, ICML.
[12] J. Junkins,et al. Optimal Estimation of Dynamic Systems , 2004 .
[13] Richard H. Lyon,et al. Geosynchronous orbit determination using space surveillance network observations and improved radiative force modeling , 2004 .
[14] Bernhard Schölkopf,et al. A tutorial on support vector regression , 2004, Stat. Comput..
[15] Christos Ampatzis,et al. Machine Learning Techniques for Approximation of Objective Functions in Trajectory Optimisation , 2009 .
[16] James W. Cutler,et al. Robust Orbit Determination and Classification: A Learning Theoretic Approach , 2015 .
[17] Quanxin Zhang,et al. Propagation errors analysis of TLE data , 2009 .
[18] P. Legendre,et al. Two Line Element Accuracy Assessment Based On A Mixture of Gaussian Laws , 2006 .
[19] D. Vallado. Fundamentals of Astrodynamics and Applications , 1997 .
[20] J. Bennett,et al. Estimation of ballistic coefficients of low altitude debris objects from historical two line elements , 2013 .
[21] Barbara Hammer,et al. A Note on the Universal Approximation Capability of Support Vector Machines , 2003, Neural Processing Letters.