Superposition, entanglement, and raising Schrödinger's cat

Experimental control of quantum systems has been pursued widely since the invention of quantum mechanics. In the first part of the 20th century, atomic physics helped provide a test-bed for quantum mechanics through studies of atoms’ internal energy differences and their interaction with radiation. The advent of spectrally pure, tunable radiation sources such as microwave oscillators and lasers dramatically improved these studies by enabling the coherent control of atoms’ internal states to deterministically prepare superposition states, as for example in the Ramsey method (Ramsey, 1990). More recently this control has been extended to the external (motional) states of atoms. Laser cooling and other refrigeration techniques have provided the initial states for a number of interesting studies, such as Bose-Einstein condensation. Similarly, control of the quantum states of artificial atoms in the context of condensed-matter systems is achieved in many laboratories throughout the world. To give proper recognition to all of these works would be a daunting task; therefore, I will restrict these notes to experiments on quantum control of internal and external states of trapped atomic ions. The precise manipulation of any system requires low-noise controls and isolation of the system from its environment. Of course the controls can be regarded as part of the environment, so we mean that the system must be isolated from the uncontrolled or noisy parts of the environment. A simple example of

[1]  J. K. Freericks,et al.  Quantum simulation and phase diagram of the transverse-field Ising model with three atomic spins , 2010, 1005.4160.

[2]  David Blair,et al.  Very high Q microwave spectroscopy on trapped /sup 171/Yb/sup +/ ions: application as a frequency standard , 1995 .

[3]  Blatt,et al.  Preparation of Fock states by observation of quantum jumps in an ion trap. , 1993, Physical review letters.

[4]  Axel Friedenauer,et al.  The “arch” of simulating quantum spin systems with trapped ions , 2009 .

[5]  Christopher Monroe,et al.  Robust probabilistic quantum information processing with atoms, photons, and atomic ensembles , 2008 .

[6]  A. P. Kazantsev Resonance light pressure , 1978 .

[7]  D. Wineland,et al.  Spectroscopy of a single Mg+ ion , 1981 .

[8]  Flavio C. Cruz,et al.  VISIBLE LASERS WITH SUBHERTZ LINEWIDTHS , 1999 .

[9]  L-M Duan,et al.  Phase control of trapped ion quantum gates , 2005 .

[10]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[11]  Rainer Blatt,et al.  Quantum jumps in atomic systems , 1988 .

[12]  Sandberg,et al.  Shelved optical electron amplifier: Observation of quantum jumps. , 1986, Physical review letters.

[13]  Ujjwal Sen,et al.  Trapped ion chain as a neural network: error resistant quantum computation. , 2007, Physical review letters.

[14]  S. Olmschenk,et al.  Quantum Logic Between Distant Trapped Ions , 2009, 0907.1702.

[15]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[16]  John L. Hall,et al.  Nobel Lecture: Defining and measuring optical frequencies , 2006 .

[17]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[18]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[19]  Zichao Zhou,et al.  88Sr+ 445-THz single-ion reference at the 10(-17) level via control and cancellation of systematic uncertainties and its measurement against the SI second. , 2012, Physical review letters.

[20]  D. Leibfried,et al.  Trapped-ion quantum simulator: experimental application to nonlinear interferometers. , 2002, Physical review letters.

[21]  Wineland,et al.  Limits for spatial anisotropy by use of nuclear-spin-polarized 9Be+ ions. , 1985, Physical review letters.

[22]  L. Maleki,et al.  Linear ion trap based atomic frequency standard , 1990 .

[23]  Moore,et al.  Quantum projection noise: Population fluctuations in two-level systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[24]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[25]  F. Khalili,et al.  Quantum nondemolition measurements: the route from toys to tools , 1996 .

[26]  V. Vuletić,et al.  Orientation-dependent entanglement lifetime in a squeezed atomic clock. , 2010, Physical review letters.

[27]  David J. Wineland,et al.  Laser cooling of atoms , 1979 .

[28]  David J. Wineland,et al.  Laser-Cooled Mercury Ion Frequency Standard , 1998 .

[29]  Kenneth R. Brown,et al.  A Two-dimensional Lattice Ion Trap for Quantum Simulation , 2007, 0809.2824.

[30]  David J. Wineland,et al.  The Atomic Deuterium Maser. , 1972 .

[31]  D. Kielpinski,et al.  Ion-trap quantum information processing: Experimental status , 2008, 0805.2450.

[32]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[33]  M. Hohenstatt,et al.  Localized visible Ba + mono-ion oscillator , 1980 .

[34]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[35]  G Goldstein,et al.  Environment-assisted precision measurement. , 2011, Physical review letters.

[36]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[37]  Experiments with an isolated subatomic particle ar rest , 1990 .

[38]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[39]  Wineland,et al.  Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[40]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[41]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[42]  F. Schmidt-Kaler,et al.  Observing the phase space trajectory of an entangled matter wave packet. , 2010, Physical review letters.

[43]  H. Margolis,et al.  Frequency metrology and clocks , 2009 .

[44]  S. Stenholm The semiclassical theory of laser cooling , 1986 .

[45]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[46]  V. Buzek,et al.  Cold trapped ions as quantum information processors , 2001, quant-ph/0112041.

[47]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[48]  C. Monroe,et al.  Decoherence and Decay of Motional Quantum States of a Trapped Atom Coupled to Engineered Reservoirs , 2000 .

[49]  R. Feynman Simulating physics with computers , 1999 .

[50]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[51]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[52]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[53]  C. Monroe,et al.  Quantum simulation of spin models on an arbitrary lattice with trapped ions , 2012, 1201.0776.

[54]  Gerard J. Milburn,et al.  Ion Trap Quantum Computing with Warm Ions , 2000 .

[55]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[56]  Arthur Ashkin,et al.  Atomic-Beam Deflection by Resonance-Radiation Pressure , 1970 .

[57]  J. P. Home,et al.  Deterministic entanglement and tomography of ion-spin qubits , 2006 .

[58]  D. Leibfried,et al.  Quantum simulation of the hexagonal Kitaev model with trapped ions , 2011, 1107.0181.

[59]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.

[60]  Cook,et al.  Intermittent atomic fluorescence. , 1986, Physical review. A, General physics.

[61]  D. Kleppner The Atomic Hydrogen Maser , 1960 .

[62]  S. Massar,et al.  Optimal quantum clocks , 1998, quant-ph/9808042.

[63]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[64]  J Glueckert,et al.  Quantum walk of a trapped ion in phase space. , 2009, Physical review letters.

[65]  A S Sørensen,et al.  Stability of atomic clocks based on entangled atoms. , 2004, Physical review letters.

[66]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[67]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[68]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[69]  Blatt,et al.  "Dark" squeezed states of the motion of a trapped ion. , 1993, Physical review letters.

[70]  E. Schrödinger,et al.  ARE THERE QUANTUM JUMPS? , 1952, The British Journal for the Philosophy of Science.

[71]  T. Sauter,et al.  On the photo-dynamics of single ions in a trap , 1988 .

[72]  H. Schuessler,et al.  HYPERFINE STRUCTURE OF THE GROUND STATE OF $sup 3$He$sup +$ BY THE ION- STORAGE EXCHANGE-COLLISION TECHNIQUE. , 1969 .

[73]  Knight,et al.  Correlations in light emitted by three-level atoms. , 1986, Physical review. A, General physics.

[74]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[75]  S. Deleglise,et al.  Reconstruction of non-classical cavity field states with snapshots of their decoherence , 2008, Nature.

[76]  T. Erber,et al.  Randomness in quantum mechanics—nature's ultimate cryptogram? , 1985, Nature.

[77]  P. Schwinberg,et al.  Precise measurements of axial, magnetron, cyclotron, and spin-cyclotron-beat frequencies on an isolated 1-meV electron , 1977 .

[78]  Blatt,et al.  Observation of quantum jumps. , 1986, Physical review letters.

[79]  X Wang,et al.  Multibit gates for quantum computing. , 2001, Physical review letters.

[80]  R. Dicke The effect of collisions upon the Doppler width of spectral lines , 1953 .

[81]  Cook,et al.  Quantum theory of particle motion in a rapidly oscillating field. , 1985, Physical review. A, General physics.

[82]  Schenzle,et al.  Possibility of quantum jumps. , 1986, Physical review. A, General physics.

[83]  David W. Allan,et al.  Results on limitations in primary cesium standard operation , 1976, IEEE Transactions on Instrumentation and Measurement.

[84]  C. F. Roos,et al.  ‘Designer atoms’ for quantum metrology , 2006, Nature.

[85]  D. Wineland,et al.  Line shifts and widths of axial, cyclotron and G-2 resonances in tailored, stored electron (ion) cloud☆ , 1975 .

[86]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[87]  Christopher Monroe,et al.  Remapping the quantum frontier , 2008 .

[88]  J. Cirac,et al.  Quantum manipulation of trapped ions in two dimensional coulomb crystals. , 2006, Physical review letters.

[89]  A. Steane,et al.  Long-lived mesoscopic entanglement outside the Lamb-Dicke regime. , 2006, Physical review letters.

[90]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[91]  King,et al.  Generation of nonclassical motional states of a trapped atom. , 1996, Physical review letters.

[92]  Christof Wunderlich,et al.  Quantum Measurements and New Concepts for Experiments with Trapped Ions , 2003 .

[93]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[94]  King,et al.  Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. , 1995, Physical review letters.

[95]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[96]  C. Monroe,et al.  Decoherence of motional states of trapped ions , 2000 .

[97]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[98]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[99]  R. Blatt,et al.  Quantum simulation of the Dirac equation , 2009, Nature.

[100]  M. Chang,et al.  Entanglement and tunable spin-spin couplings between trapped ions using multiple transverse modes. , 2009, Physical review letters.

[101]  D. Wineland,et al.  High-fidelity adaptive qubit detection through repetitive quantum nondemolition measurements. , 2007, Physical review letters.

[102]  Juha Javanainen Possibility of quantum jumps in a three-level system. , 1986, Physical review. A, General physics.

[103]  M. Nieto,et al.  Coherent States and the Forced Quantum Oscillator , 1965 .

[104]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[105]  W. Itano,et al.  Generation of continuous-wave 194-nm radiation by sum-frequency mixing in an external ring cavity. , 1982, Optics letters.

[106]  P. Gill Frequency Standards and Metrology , 2002 .

[107]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .

[108]  Patrick Gill,et al.  When should we change the definition of the second? , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[109]  P. Gill Optical frequency standards , 2005 .

[110]  H. Dehmelt,et al.  Monoion oscillator as potential ultimate laser frequency standard , 1982, IEEE Transactions on Instrumentation and Measurement.

[111]  Enrique Solano,et al.  DETERMINISTIC BELL STATES AND MEASUREMENT OF THE MOTIONAL STATE OF TWO TRAPPED IONS , 1999 .

[112]  Wineland,et al.  Laser-cooling limits and single-ion spectroscopy. , 1987, Physical review. A, General physics.

[113]  F Levi,et al.  Single-atom optical clock with high accuracy. , 2006, Physical review letters.

[114]  J. Chiaverini,et al.  Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays , 2007, 0711.0233.

[115]  T. Hänsch Nobel Lecture: Passion for precision* , 2006 .

[116]  H. Risken,et al.  Quantum Collapses and Revivals in a Quantized Trap , 1992 .

[117]  Wineland,et al.  Radiative decay rates in Hg+ from observations of quantum jumps in a single ion. , 1987, Physical review letters.

[118]  M. Johanning,et al.  Quantum simulations with cold trapped ions , 2009, 0905.0118.

[119]  Tobias Schaetz,et al.  Experimental quantum simulations of many-body physics with trapped ions , 2012, Reports on progress in physics. Physical Society.

[120]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[121]  Wineland,et al.  Observation of quantum jumps in a single atom. , 1986, Physical review letters.

[122]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[123]  F. G. Major,et al.  ULTRAHIGH RESOLUTION $delta$F = 0, /+ -/1 ($sup 3$He)$sup +$ HFS SPECTRA BY AN ION-STORAGE COLLISION TECHNIQUE , 1966 .

[124]  F. L. Walls,et al.  Radiation-Pressure Cooling of Bound Resonant Absorbers , 1978 .

[125]  F. G. Major,et al.  High-Resolution Magnetic Hyperfine Resonance in Harmonically Bound Ground-State Hg 199 Ions , 1973 .

[126]  T. Schaetz,et al.  Simulating a quantum magnet with trapped ions , 2008 .

[127]  David J. Wineland Superposition, Entanglement, and Raising Schrödinger's Cat , 2013 .

[128]  D. Porras,et al.  Effective spin quantum phases in systems of trapped ions (11 pages) , 2005 .

[129]  J. M. Taylor,et al.  Wigner crystals of ions as quantum hard drives , 2007, 0706.1951.

[130]  Daniel Kleppner,et al.  THEORY OF THE HYDROGEN MASER , 1962 .

[131]  T. Hänsch,et al.  Cooling of gases by laser radiation , 1975 .

[132]  T. Schaetz,et al.  Towards (scalable) quantum simulations in ion traps , 2007 .

[133]  C. cohen-tannoudji,et al.  Single-Atom Laser Spectroscopy. Looking for Dark Periods in Fluorescence Light , 1986 .

[134]  Wineland,et al.  Recoilless optical absorption and Doppler sidebands of a single trapped ion. , 1987, Physical review. A, General physics.

[135]  Lu-Ming Duan,et al.  Quantum simulation of frustrated Ising spins with trapped ions , 2010, Nature.

[136]  P. C. Haljan,et al.  Entanglement of trapped-ion clock states , 2005 .

[137]  Law,et al.  Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.

[138]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[139]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[140]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[141]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[142]  Peter Zoller,et al.  Nonclassical States of Motion in Ion Traps , 1996 .

[143]  D. Wineland,et al.  A 303-MHz frequency standard based on trapped Be/sup +/ ions , 1991, IEEE Transactions on Instrumentation and Measurement.

[144]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[145]  C Langer,et al.  Spectroscopy Using Quantum Logic , 2005, Science.

[146]  M. Hohenstatt,et al.  "Optical-sideband Cooling of Visible Atom Cloud Confined in Parabolic Well" , 1978 .

[147]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[148]  Wineland,et al.  Laser cooling to the zero-point energy of motion. , 1989, Physical review letters.

[149]  C. Monroe,et al.  Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. , 2001, Physical review letters.