A proof of the Erd\H{o}s-Faber-Lov\'asz conjecture

The Erdős-Faber-Lovász conjecture (posed in 1972) states that the chromatic index of any linear hypergraph on n vertices is at most n. In this paper, we prove this conjecture for every large n. We also provide stability versions of this result, which confirm a prediction of Kahn.

[1]  Paul D. Seymour,et al.  Packing nearly-disjoint sets , 1982, Comb..

[2]  Jeong Han Kim On Brooks' Theorem for Sparse Graphs , 1995, Comb. Probab. Comput..

[3]  Dong Yeap Kang,et al.  New bounds on the size of nearly perfect matchings in almost regular hypergraphs , 2020, Journal of the London Mathematical Society.

[4]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[5]  V. G. Vizing The chromatic class of a multigraph , 1965 .

[6]  Michael Krivelevich,et al.  Triangle Factors in Random Graphs , 1997, Combinatorics, Probability and Computing.

[7]  Daniela Kühn,et al.  Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments , 2012, ArXiv.

[8]  F. Chung,et al.  Connected Components in Random Graphs with Given Expected Degree Sequences , 2002 .

[9]  Zoltán Füredi,et al.  The chromatic index of simple hypergraphs , 1986, Graphs Comb..

[10]  Noga Alon,et al.  On a Hypergraph Matching Problem , 2005, Graphs Comb..

[11]  Stefan Ehard,et al.  Pseudorandom hypergraph matchings , 2019, Combinatorics, Probability and Computing.

[12]  B. Reed Graph Colouring and the Probabilistic Method , 2001 .

[13]  Paul Erdös,et al.  Vertex coverings by monochromatic cycles and trees , 1991, J. Comb. Theory, Ser. B.

[14]  Vojtech Rödl,et al.  A Dirac-Type Theorem for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[15]  L~szl Lov~sz Subgraphs with Prescribed Valencies , 2006 .

[16]  Jeff Kahn,et al.  Coloring Nearly-Disjoint Hypergraphs with n+o(n) Colors , 1992, J. Comb. Theory, Ser. A.

[17]  J. Kahn Asymptotics of Hypergraph Matching, Covering and Coloring Problems , 1995 .

[18]  David G. Harris,et al.  Edge-coloring linear hypergraphs with medium-sized edges , 2019, Random Struct. Algorithms.

[19]  Vance Faber The Erdös-Faber-Lovász conjecture – the uniform regular case , 2010 .

[20]  Van H. Vu,et al.  A General Upper Bound on the List Chromatic Number of Locally Sparse Graphs , 2002, Combinatorics, Probability and Computing.

[21]  Eugene L. Lawler,et al.  Edge coloring of hypergraphs and a conjecture of ErdÖs, Faber, Lovász , 1988, Comb..

[22]  Joel H. Spencer,et al.  Asymptotic behavior of the chromatic index for hypergraphs , 1989, J. Comb. Theory, Ser. A.

[23]  Alistair Sinclair,et al.  Beyond the Lovász Local Lemma: Point to Set Correlations and Their Algorithmic Applications , 2018, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[24]  Henning Bruhn,et al.  A stronger bound for the strong chromatic index , 2015, Electron. Notes Discret. Math..

[25]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[26]  C. Berge On the Chromatic Index of a Linear Hypergraph and the Chvátal Conjecture , 1989 .

[27]  Ross J. Kang,et al.  Graph structure via local occupancy , 2020, 2003.14361.

[28]  Hao Huang,et al.  A counterexample to the Alon-Saks-Seymour conjecture and related problems , 2010, Comb..

[29]  Paul D. Seymour,et al.  A fractional version of the Erdős-Faber-Lovász conjecture , 1992, Comb..

[30]  Gary Chartrand,et al.  Erdős on Graphs : His Legacy of Unsolved Problems , 2011 .

[31]  Jeff Kahn,et al.  On Some Hypergraph Problems of Paul Erdős and the Asymptotics of Matchings, Covers and Colorings , 2013, The Mathematics of Paul Erdős I.

[32]  Alan M. Frieze,et al.  Coloring simple hypergraphs , 2013, J. Comb. Theory, Ser. B.

[33]  Luke Postle,et al.  Colouring Graphs with Sparse Neighbourhoods: Bounds and Applications , 2018, J. Comb. Theory B.

[34]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[35]  Jeff Kahn,et al.  Asymptotically Good List-Colorings , 1996, J. Comb. Theory A.

[36]  Daniela Kühn,et al.  Optimal path and cycle decompositions of dense quasirandom graphs , 2015, Electron. Notes Discret. Math..

[37]  János Komlós,et al.  Extremal Uncrowded Hypergraphs , 1982, J. Comb. Theory, Ser. A.

[38]  Noga Alon,et al.  Coloring Graphs with Sparse Neighborhoods , 1999, J. Comb. Theory B.

[39]  Ross J. Kang,et al.  An improved procedure for colouring graphs of bounded local density , 2021, SODA.

[40]  R. Graham,et al.  On embedding graphs in squashed cubes , 1972 .

[41]  Bruce A. Reed,et al.  Near-optimal list colorings , 2000, Random Struct. Algorithms.

[42]  Paul Erdös,et al.  On the combinatorial problems which I would most like to see solved , 1981, Comb..