Structured condition numbers for some matrix factorizations of structured matrices

Abstract Using the modified matrix–vector approach and the differential calculus, we study the structured condition numbers for LU, Cholesky and QR factorizations of some structured matrices that can be represented by sets of parameters. The obtained explicit expressions of these structured condition numbers are very general, which are applicable to most of linear and non-linear structured matrices, and include the popular normwise, mixed and componentwise condition numbers as special cases. More specific explicit expressions of the structured condition numbers for linear structured matrices are also provided. We compare the structured condition numbers with the corresponding unstructured ones in theory and experiment. Numerical results show that, for non-linear structured matrices, the structured condition numbers can be much smaller than the unstructured ones. In addition, we also test the applications of structured condition numbers in estimating the first-order perturbation bounds of matrix factorizations using numerical examples.

[1]  Siegfried M. Rump,et al.  Structured Perturbations Part I: Normwise Distances , 2003, SIAM J. Matrix Anal. Appl..

[2]  Numerical Properties of Shifted Tridiagonal LU Factorizations , 2007 .

[3]  Siegfried M. Rump,et al.  Structured Perturbations Part II: Componentwise Distances , 2003, SIAM J. Matrix Anal. Appl..

[4]  Stability and Sensitivity of Tridiagonal LU Factorization without Pivoting , 2004 .

[5]  Wen Li,et al.  Sensitivity analysis for the SR decomposition , 2015 .

[6]  Yimin Wei,et al.  Mixed and componentwise condition numbers for matrix decompositions , 2017, Theor. Comput. Sci..

[7]  G. Stewart,et al.  New perturbation analyses for the Cholesky factorization , 1996 .

[8]  G. Stewart,et al.  Perturbation Analyses for the QR Factorization , 1997, SIAM J. Matrix Anal. Appl..

[9]  A. J. Geurts,et al.  A contribution to the theory of condition , 1982 .

[10]  Israel Koltracht,et al.  Mixed componentwise and structured condition numbers , 1993 .

[11]  Felipe Cucker,et al.  Mixed and componentwise condition numbers for rectangular structured matrices , 2007 .

[12]  Froilán M. Dopico,et al.  Structured condition numbers for linear systems with parameterized quasiseparable coefficient matrices , 2016, Numerical Algorithms.

[13]  Xiao-Qing Jin,et al.  On condition numbers for the canonical generalized polar decompostion of real matrices , 2013 .

[14]  Nicholas J. Higham,et al.  Backward Error and Condition of Structured Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[15]  J. Rice A Theory of Condition , 1966 .

[16]  Froilán M. Dopico,et al.  Perturbation Theory for Factorizations of LU Type through Series Expansions , 2005, SIAM J. Matrix Anal. Appl..

[17]  Silvia Noschese,et al.  Eigenvalue condition numbers: zero-structured versus traditional , 2006 .

[18]  Xiao-Wen Chang,et al.  Sensitivity analyses for factorizations of sparse or structured matrices , 1998 .

[19]  Nicholas J. Higham,et al.  Structured Backward Error and Condition of Generalized Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[20]  Damien Stehlé,et al.  Rigorous Perturbation Bounds of Some Matrix Factorizations , 2010, SIAM J. Matrix Anal. Appl..

[21]  Yimin Wei,et al.  Improved rigorous perturbation bounds for the LU and QR factorizations , 2015, Numer. Linear Algebra Appl..

[22]  Yimin Wei,et al.  Condition Numbers for Structured Least Squares Problems , 2006 .

[23]  Daniel Kressner,et al.  Structured Eigenvalue Condition Numbers , 2006, SIAM J. Matrix Anal. Appl..

[24]  M. Rozložník,et al.  On the conditioning of factors in the SR decomposition , 2016 .

[25]  Hua Xiang,et al.  Structured mixed and componentwise condition numbers of some structured matrices , 2007 .

[26]  M. Saunders,et al.  LEAST SQUARES ESTIMATION OF DISCRETE LINEAR DYNAMIC SYSTEMS USING ORTHOGONAL TRANSFORMATIONS , 1977 .

[27]  Froilán M. Dopico,et al.  Structured eigenvalue condition numbers for parameterized quasiseparable matrices , 2016, Numerische Mathematik.

[28]  Xiao-Wen Chang,et al.  On the sensitivity of the LU factorization , 1998 .

[29]  Wen Li,et al.  Sensitivity analysis for the symplectic QR factorization , 2016, J. Frankl. Inst..

[30]  Hanyu Li,et al.  New perturbation bounds and condition numbers for the hyperbolic QR factorization , 2017 .