New results on the analysis and control of nonlinear time-delay systems

Nonlinear time-delay systems are considered under an algebraic approach of noncommutative modules. Considered control issues include system's accessibility, a classification of causal compensators, and disturbance decoupling.

[1]  V. Kolmanovskii,et al.  Stability of Functional Differential Equations , 1986 .

[2]  Anna Maria Perdon,et al.  The Disturbance Decoupling Problem for Systems Over a Ring , 1995 .

[3]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[4]  Joachim Rudolph,et al.  Flatness-based control of nonlinear delay systems: A chemical reactor example , 1998 .

[5]  A. Olbrot,et al.  Canonical forms for time delay systems , 1982 .

[6]  Michel Fliess,et al.  Interpretation and Comparison of Various Types of Delay System Controllabilities 1 , 1995 .

[7]  Jeffrey C. Kantor,et al.  Sliding Mode Control of an Exothermic Continuous Stirred Tank Reactor , 1991, 1991 American Control Conference.

[8]  Peter J. Wangersky,et al.  Time Lag in Prey‐Predator Population Models , 1957 .

[9]  Jean-François Lafay,et al.  On feedback invariance properties for systems over a principal ideal domain , 1999, IEEE Trans. Autom. Control..

[10]  C. Moog,et al.  A linear algebraic framework for dynamic feedback linearization , 1995, IEEE Trans. Autom. Control..

[11]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[12]  Krishnan Balachandran,et al.  Controllability of nonlinear systems consisting of a bilinear mode with time-varying delays in control , 1984, Autom..

[13]  C.H. Moog,et al.  Bi-causal solutions to the disturbance decoupling problem for time-delay nonlinear systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[14]  Martín Velasco-Villa,et al.  The disturbance decoupling problem for time-delay nonlinear systems , 2000, IEEE Trans. Autom. Control..