Light trapping in hybrid nanopyramid and nanohole structure silicon solar cell beyond the Lambertian limit

We propose a hybrid nanostructure that comprises nanopyramids and nanoholes for thin film silicon (Si) solar cells. The hybrid structure demonstrates a stronger light trapping ability that is beyond the Lambertian limit. This is achieved with the smaller dimension nanohole structure which effectively reduces shorter wavelength light reflection, and the larger dimension nanopyramid structure which significantly enhances longer wavelength light trapping. An ultimate efficiency of 38.3% is yielded for a 2 μm thick Si cell incorporated with the hybrid structure, which is higher than that achievable corresponding to the Lambertian limit. Moreover, the high ultimate efficiency is retained as the incident angle increases from normal incidence to 50° for TM polarized sunlight. Therefore, the proposed hybrid structure is very promising to enhance the performance of thin film Si solar cells.

[1]  Gang Chen,et al.  Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. , 2010, Nano letters.

[2]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[3]  Yi Cui,et al.  Nanowire Solar Cells , 2011 .

[4]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[5]  Gang Chen,et al.  Efficient light-trapping nanostructures in thin silicon solar cells , 2011, Defense + Commercial Sensing.

[6]  Jianming Jin The Finite Element Method , 2010 .

[7]  Zongfu Yu,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[8]  Harry A Atwater,et al.  Solar Cell light trapping beyond the ray optic limit. , 2012, Nano letters.

[9]  Gang Chen,et al.  Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. , 2012, Nano letters.

[10]  Dong Wang,et al.  Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates , 2011, Beilstein journal of nanotechnology.

[11]  Rusli,et al.  Design guideline of Si nanohole/PEDOT:PSS hybrid structure for solar cell application , 2013, Nanotechnology.

[12]  Penghui Ma,et al.  Toward perfect antireflection coatings: numerical investigation. , 2002, Applied optics.

[13]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[14]  Hongyu Yu,et al.  Maskless fabrication of large scale Si nanohole array via laser annealed metal nanoparticles catalytic etching for photovoltaic application , 2010 .

[15]  S. Fan,et al.  Nanophotonic light-trapping theory for solar cells , 2011 .

[16]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[17]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[18]  Domenico Pacifici,et al.  How much can guided modes enhance absorption in thin solar cells? , 2009, Optics express.

[19]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[20]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[21]  E. Yablonovitch Statistical ray optics , 1982 .

[22]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[23]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[24]  C. Thompson,et al.  Solid-state dewetting for ordered arrays of crystallographically oriented metal particles , 2005 .

[25]  Stefan Zukotynski,et al.  High-efficiency photonic crystal solar cell architecture. , 2009, Optics express.

[26]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[27]  Emily D. Kosten,et al.  Ray optical light trapping in silicon microwires: exceeding the 2n(2) intensity limit. , 2011, Optics express.

[28]  Daniel Poitras,et al.  Toward perfect antireflection coatings. 2. Theory. , 2004, Applied optics.