The Prediction of Merged Attributes with Multiple Viewpoint Systems

Multiple viewpoint systems find statistical structure in multi-dimensional entities, such as music, by combining Markov-based models together in order to make probabilistic predictions. This paper empirically tests two contrasting techniques for predicting multiple attributes of a musical surface. The first, an established method, predicts each attribute in turn, whilst a second, a proposed alternative, merges attributes into a new representation in order to make predictions simultaneously. A set of optimal smoothing techniques are found for both prediction methods across several harmonic and melodic datasets. Results indicate that when surface attributes are highly correlated, predicting merged attributes outperforms predicting the attributes separately. This can allow viewpoint systems with correlated surface attributes to be optimized, giving a closer fit with the training data as measured by mean information content.

[1]  François Pachet,et al.  Computer Analysis of Jazz Chord Sequence: Is Solar a Blues? , 2000, Readings in Music and Artificial Intelligence.

[2]  Elaine Chew,et al.  The Spiral Array: An Algorithm for Determining Key Boundaries , 2002, ICMAI.

[3]  Mark B. Sandler,et al.  Symbolic Representation of Musical Chords: A Proposed Syntax for Text Annotations , 2005, ISMIR.

[4]  Robert O. Gjerdingen,et al.  The Cognition of Basic Musical Structures , 2004 .

[5]  François Pachet,et al.  A Comprehensive Online Database of Machine-Readable Lead-Sheets for Jazz Standards , 2013, ISMIR.

[6]  François Pachet,et al.  Markov constraints: steerable generation of Markov sequences , 2010, Constraints.

[7]  Mark Levine,et al.  The Jazz Theory Book , 1995 .

[8]  John Wade Ulrich,et al.  The Analysis and Synthesis of Jazz by Computer , 1977, IJCAI.

[9]  Chris Mellish,et al.  Statistical Learning of Harmonic Movement , 1999 .

[10]  E. Margulis Sweet Anticipation: Music and the Psychology of Expectation. By David Huron. Cambridge, Massachusetts: The MIT Press, 2006, xii + 462 pages , 2012 .

[11]  W. Teahan,et al.  Experiments on the zero frequency problem , 1995, Proceedings DCC '95 Data Compression Conference.

[12]  S. Jeong Harmony , 2012, SIGGRAPH '12.

[13]  Ian H. Witten,et al.  An empirical evaluation of coding methods for multi-symbol alphabets , 1993, [Proceedings] DCC `93: Data Compression Conference.

[14]  Esko Ukkonen,et al.  On-line construction of suffix trees , 1995, Algorithmica.

[15]  François Pachet,et al.  Non-Conformant Harmonization: the Real Book in the Style of Take 6 , 2014, ICCC.

[16]  Geraint A. Wiggins,et al.  The Role of Expectation and Probabilistic Learning in Auditory Boundary Perception: A Model Comparison , 2010, Perception.

[17]  Frans M. J. Willems,et al.  The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.

[18]  Ran El-Yaniv,et al.  On Prediction Using Variable Order Markov Models , 2004, J. Artif. Intell. Res..

[19]  Geraint A. Wiggins,et al.  Harmonising Melodies: Why Do We Add the Bass Line First? , 2013, ICCC.

[20]  François Pachet,et al.  The Continuator: Musical Interaction With Style , 2003, ICMC.

[21]  Darrell Conklin,et al.  Discovery of distinctive patterns in music , 2010, Intell. Data Anal..

[22]  Mark Steedman,et al.  A Generative Grammar for Jazz Chord Sequences , 1984 .

[23]  Darrell Conklin,et al.  Representation and Discovery of Vertical Patterns in Music , 2002, ICMAI.

[24]  José Manuel Iñesta Quereda,et al.  Genre classification using chords and stochastic language models , 2009, Connect. Sci..

[25]  Martin Rohrmeier,et al.  Towards a generative syntax of tonal harmony , 2011 .

[26]  A. Forte The Structure of Atonal Music , 1973 .

[27]  Frederick Jelinek,et al.  Interpolated estimation of Markov source parameters from sparse data , 1980 .

[28]  W. Dowling Emotion and Meaning in Music , 2008 .

[29]  John G. Cleary,et al.  Unbounded length contexts for PPM , 1995, Proceedings DCC '95 Data Compression Conference.

[30]  Ian H. Witten,et al.  Multiple viewpoint systems for music prediction , 1995 .

[31]  Shlomo Dubnov,et al.  Using Factor Oracles for Machine Improvisation , 2004, Soft Comput..

[32]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[33]  Helen Creighton,et al.  Songs and Ballads from Nova Scotia , 1964 .

[34]  Raymond Whorley The construction and evaluation of statistical models of melody and harmony , 2013 .

[35]  Mark Steedman,et al.  A Robust Parser-Interpreter for Jazz Chord Sequences , 2014 .

[36]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[37]  C. Stevens,et al.  Sweet Anticipation: Music and the Psychology of Expectation, by David Huron . Cambridge, Massachusetts: MIT Press, 2006 , 2007 .

[38]  Raphail E. Krichevsky,et al.  The performance of universal encoding , 1981, IEEE Trans. Inf. Theory.

[39]  Suzanne Bunton,et al.  Semantically Motivated Improvements for PPM Variants , 1997, Comput. J..

[40]  Alberto Maria Segre,et al.  The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. during the Influenza A H1N1 Pandemic , 2011, PloS one.

[41]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[42]  Dana Ron,et al.  The power of amnesia: Learning probabilistic automata with variable memory length , 1996, Machine Learning.

[43]  Geraint A. Wiggins,et al.  Improved Methods for Statistical Modelling of Monophonic Music , 2004 .

[44]  R. Jackendoff,et al.  A Generative Theory of Tonal Music , 1985 .

[45]  Eugene Narmour,et al.  The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model , 1990 .

[46]  JORMA RISSANEN,et al.  A universal data compression system , 1983, IEEE Trans. Inf. Theory.

[47]  Nicolas Meeùs Toward a Post-Schoenbergian Grammar of Tonal and Pre-tonal Harmonic Progressions , 2000 .

[48]  Ian H. Witten,et al.  Arithmetic coding revisited , 1998, TOIS.

[49]  Paul G. Howard,et al.  The design and analysis of efficient lossless data compression systems , 1993 .

[50]  Geraint A. Wiggins,et al.  Methods for Combining Statistical Models of Music , 2004, CMMR.

[51]  Erwin R. Jacobi,et al.  Treatise on Harmony , 1971 .

[52]  Ian H. Witten,et al.  The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression , 1991, IEEE Trans. Inf. Theory.

[53]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[54]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[55]  Marcus T. Pearce,et al.  The construction and evaluation of statistical models of melodic structure in music perception and composition , 2005 .

[56]  Dmitry A. Shkarin,et al.  PPM: one step to practicality , 2002, Proceedings DCC 2002. Data Compression Conference.

[57]  Kemal Ebcioglu,et al.  An Expert System for Chorale Harmonization , 1986, AAAI.

[58]  Ian H. Witten,et al.  An Empirical Evaluation of Coding Methods for Multi-symbol Alphabets , 1994, Inf. Process. Manag..

[59]  Hermann Ney,et al.  Improved backing-off for M-gram language modeling , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[60]  Golan Yona,et al.  Variations on probabilistic suffix trees: statistical modeling and prediction of protein families , 2001, Bioinform..

[61]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[62]  Alistair Moffat,et al.  Implementing the PPM data compression scheme , 1990, IEEE Trans. Commun..

[63]  F. A. Gore Ouseley,et al.  A Treatise on Harmony , 2008 .

[64]  Richard E. Ladner,et al.  On-line stochastic processes in data compression , 1996 .

[65]  Shlomo Dubnov,et al.  Using Machine-Learning Methods for Musical Style Modeling , 2003, Computer.

[66]  Jean-François Paiement,et al.  A Probabilistic Model for Chord Progressions , 2005, ISMIR.

[67]  Hugh Christopher Longuet-Higgins,et al.  Review Lecture The perception of music , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.