Seed-mediated growth of MOF-encapsulated Pd@Ag core–shell nanoparticles: toward advanced room temperature nanocatalysts† †Electronic supplementary information (ESI) available: Experimental details and catalysts characterization. See DOI: 10.1039/c5sc02925b Click here for additional data file.

Core–shell Pd@Ag nanoparticles are formed within the pores of MOFs via a seed mediated growth strategy with activated hydrogen atoms as the reducing agent, leading to a family of bimetallic core–shell MOF nanomaterials with excelling catalytic performance in room temperature reactions.

[1]  Shuhong Yu,et al.  A seed-mediated approach to the general and mild synthesis of non-noble metal nanoparticles stabilized by a metal–organic framework for highly efficient catalysis , 2015 .

[2]  Xiaodong Chen,et al.  One-step encapsulation of Pd nanoparticles in MOFs via a temperature control program , 2015 .

[3]  Y. Liu,et al.  Core–Shell Upconversion Nanoparticle@Metal–Organic Framework Nanoprobes for Luminescent/Magnetic Dual‐Mode Targeted Imaging , 2015, Advanced materials.

[4]  Fei Wang,et al.  Controllable Synthesis of Mesoporous Peapod-like Co3O4@Carbon Nanotube Arrays for High-Performance Lithium-Ion Batteries. , 2015, Angewandte Chemie.

[5]  Zhiyong Tang,et al.  Solar‐Light‐Driven Renewable Butanol Separation by Core–Shell Ag@ZIF‐8 Nanowires , 2015, Advanced materials.

[6]  Xiaodong Chen,et al.  Encapsulation of Mono- or Bimetal Nanoparticles Inside Metal-Organic Frameworks via In situ Incorporation of Metal Precursors. , 2015, Small.

[7]  Yayuan Liu,et al.  Mesoporous Metal–Organic Frameworks with Size‐, Shape‐, and Space‐Distribution‐Controlled Pore Structure , 2015, Advanced materials.

[8]  X. Duan,et al.  Metal-organic framework templated synthesis of ultrathin, well-aligned metallic nanowires. , 2015, ACS nano.

[9]  Shuhong Yu,et al.  Multifunctional PdAg@MIL-101 for One-Pot Cascade Reactions: Combination of Host–Guest Cooperation and Bimetallic Synergy in Catalysis , 2015 .

[10]  Ana E. Platero‐Prats,et al.  Double-Supported Silica-Metal–Organic Framework Palladium Nanocatalyst for the Aerobic Oxidation of Alcohols under Batch and Continuous Flow Regimes , 2015 .

[11]  Ana E. Platero‐Prats,et al.  The first one-pot synthesis of metal-organic frameworks functionalised with two transition-metal complexes. , 2015, Chemistry.

[12]  Chia‐Kuang Tsung,et al.  Core–Shell Catalysts of Metal Nanoparticle Core and Metal–Organic Framework Shell , 2014 .

[13]  G. Somorjai,et al.  Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. , 2014, Nano letters.

[14]  R. Luque,et al.  Metal−organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts , 2014 .

[15]  Kenichi Kato,et al.  Hydrogen storage in Pd nanocrystals covered with a metal-organic framework. , 2014, Nature materials.

[16]  Yamil J. Colón,et al.  High-throughput computational screening of metal-organic frameworks. , 2014, Chemical Society reviews.

[17]  Qiang Zhang,et al.  Tuning the structure and function of metal-organic frameworks via linker design. , 2014, Chemical Society reviews.

[18]  G. Cheng,et al.  AgPd nanoparticles supported on MIL-101 as high performance catalysts for catalytic dehydrogenation of formic acid , 2014 .

[19]  Yi‐nan Wu,et al.  Magnetic metal-organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery. , 2014, Small.

[20]  N. Zheng,et al.  A hydride-induced-reduction strategy for fabricating palladium-based core-shell bimetallic nanocrystals. , 2014, Nanoscale.

[21]  D. Alexander,et al.  How to increase the selectivity of Pd-based catalyst in alkynol hydrogenation: Effect of second metal , 2014 .

[22]  Wenbin Lin,et al.  Postsynthetic metalation of bipyridyl-containing metal-organic frameworks for highly efficient catalytic organic transformations. , 2014, Journal of the American Chemical Society.

[23]  Zhiyong Tang,et al.  Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. , 2014, Journal of the American Chemical Society.

[24]  T. Akita,et al.  Metal-organic framework-immobilized polyhedral metal nanocrystals: reduction at solid-gas interface, metal segregation, core-shell structure, and high catalytic activity. , 2013, Journal of the American Chemical Society.

[25]  Z. Tang,et al.  Multifunctional Nanoparticle@MOF Core–Shell Nanostructures , 2013, Advanced materials.

[26]  Michael J. Katz,et al.  A facile synthesis of UiO-66, UiO-67 and their derivatives. , 2013, Chemical communications.

[27]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[28]  Yuxiang Han,et al.  TiO2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene. , 2013, Chemical communications.

[29]  Z. Tang,et al.  Controlled synthesis of non-epitaxially grown Pd@Ag core-shell nanocrystals of interesting optical performance. , 2013, Chemical communications.

[30]  Zhiyong Tang,et al.  Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. , 2013, Angewandte Chemie.

[31]  H. R. Moon,et al.  Fabrication of metal nanoparticles in metal-organic frameworks. , 2013, Chemical Society reviews.

[32]  Nikolaos Dimitratos,et al.  Designing bimetallic catalysts for a green and sustainable future. , 2012, Chemical Society reviews.

[33]  Qiang Xu,et al.  Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. , 2012, Journal of the American Chemical Society.

[34]  Bartosz A Grzybowski,et al.  Nanoparticle core/shell architectures within MOF crystals synthesized by reaction diffusion. , 2012, Angewandte Chemie.

[35]  Krista S. Walton,et al.  Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74. , 2012, Journal of the American Chemical Society.

[36]  H. García,et al.  Catalysis by metal nanoparticles embedded on metal-organic frameworks. , 2012, Chemical Society reviews.

[37]  Cheng Wang,et al.  Pt nanoparticles@photoactive metal-organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. , 2012, Journal of the American Chemical Society.

[38]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[39]  Hui Zhang,et al.  Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. , 2012, Angewandte Chemie.

[40]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[41]  B. Ren,et al.  Enhancing the Photothermal Stability of Plasmonic Metal Nanoplates by a Core‐Shell Architecture , 2011, Advanced materials.

[42]  Dingsheng Wang,et al.  Bimetallic Nanocrystals: Liquid‐Phase Synthesis and Catalytic Applications , 2011, Advanced materials.

[43]  T. Akita,et al.  Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. , 2011, Journal of the American Chemical Society.

[44]  I. M. Robertson,et al.  Ordered metal nanostructure self-assembly using metal–organic frameworks as templates , 2010 .

[45]  I. M. Robertson,et al.  Silver cluster formation, dynamics, and chemistry in metal-organic frameworks. , 2009, Nano letters.

[46]  Rafael Luque,et al.  Supported metal nanoparticles on porous materials. Methods and applications. , 2009, Chemical Society reviews.

[47]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[48]  Axel Knop-Gericke,et al.  The Roles of Subsurface Carbon and Hydrogen in Palladium-Catalyzed Alkyne Hydrogenation , 2008, Science.

[49]  R. T. Yang,et al.  Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. , 2006, Journal of the American Chemical Society.

[50]  R. T. Yang,et al.  Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. , 2006, Journal of the American Chemical Society.

[51]  R. Fischer,et al.  Metal–organic frameworks as hosts for nanoparticles , 2015 .

[52]  Shuhong Yu,et al.  Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis. , 2015, Small.

[53]  Zhong Li,et al.  Metal–organic framework MIL-101 doped with palladium for toluene adsorption and hydrogen storage , 2014 .

[54]  M. Haruta,et al.  Catalytically highly active top gold atom on palladium nanocluster. , 2011, Nature materials.

[55]  Z. Tang,et al.  The Institute of Chemistry of Great Britain and Ireland. Proceedings, 1912. Part III , 1912 .