Screening for Microbial Metal-Chelating Siderophores for the Removal of Metal Ions from Solutions

To guarantee the supply of critical elements in the future, the development of new technologies is essential. Siderophores have high potential in the recovery and recycling of valuable metals due to their metal-chelating properties. Using the Chrome azurol S assay, 75 bacterial strains were screened to obtain a high-yield siderophore with the ability to complex valuable critical metal ions. The siderophore production of the four selected strains Nocardioides simplex 3E, Pseudomonas chlororaphis DSM 50083, Variovorax paradoxus EPS, and Rhodococcus erythropolis B7g was optimized, resulting in significantly increased siderophore production of N. simplex and R. erythropolis. Produced siderophore amounts and velocities were highly dependent on the carbon source. The genomes of N. simplex and P. chlororaphis were sequenced. Bioinformatical analyses revealed the occurrence of an achromobactin and a pyoverdine gene cluster in P. chlororaphis, a heterobactin and a requichelin gene cluster in R. erythropolis, and a desferrioxamine gene cluster in N. simplex. Finally, the results of the previous metal-binding screening were validated by a proof-of-concept development for the recovery of metal ions from aqueous solutions utilizing C18 columns functionalized with siderophores. We demonstrated the recovery of the critical metal ions V(III), Ga(III), and In(III) from mixed metal solutions with immobilized siderophores of N. simplex and R. erythropolis.

[1]  P. Sobrado,et al.  Biosynthesis of desferrioxamine siderophores initiated by decarboxylases: A functional investigation of two lysine/ornithine-decarboxylases from Gordonia rubripertincta CWB2 and Pimelobacter simplex 3E. , 2020, Archives of biochemistry and biophysics.

[2]  J. Bandow,et al.  Cultivation dependent formation of siderophores by Gordonia rubripertincta CWB2. , 2020, Microbiological research.

[3]  D. Tischler,et al.  Metal binding ability of microbial natural metal chelators and potential applications. , 2020, Natural product reports.

[4]  S. You,et al.  Simultaneous recovery of rare earth elements from waste permanent magnets (WPMs) leach liquor by solvent extraction and hollow fiber supported liquid membrane , 2020 .

[5]  Syed Z. Islam,et al.  Selective Recovery of Rare Earth Elements from a Wide Range of E-Waste and Process Scalability of Membrane Solvent Extraction. , 2019, Environmental science & technology.

[6]  D. Tischler,et al.  Draft genomes and initial characteriaztion of siderophore producing pseudomonads isolated from mine dump and mine drainage , 2019, Biotechnology reports.

[7]  J. Bandow,et al.  Bacterial Metabolites Produced Under Iron Limitation Kill Pinewood Nematode and Attract Caenorhabditis elegans , 2019, Front. Microbiol..

[8]  R. Barthen,et al.  Recovery of gallium from wafer fabrication industry wastewaters by Desferrioxamine B and E using reversed-phase chromatography approach. , 2019, Water research.

[9]  S. Lee,et al.  antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline , 2019, Nucleic Acids Res..

[10]  Ghassan Ghssein,et al.  Chelating Mechanisms of Transition Metals by Bacterial Metallophores "Pseudopaline and Staphylopine": A Quantum Chemical Assessment , 2018, Comput..

[11]  T. Brüser,et al.  The biosynthesis of pyoverdines , 2018, Microbial cell.

[12]  K. Szymanska,et al.  Analysis of desferrioxamine-like siderophores and their capability to selectively bind metals and metalloids: development of a robust analytical RP-HPLC method. , 2018, Research in microbiology.

[13]  G. Levicán,et al.  Draft genome sequence of Rhodococcus erythropolis B7g, a biosurfactant producing actinobacterium. , 2018, Journal of biotechnology.

[14]  R. Chávez,et al.  Detection of arsenic-binding siderophores in arsenic-tolerating Actinobacteria by a modified CAS assay. , 2018, Ecotoxicology and environmental safety.

[15]  Ning Dai,et al.  Continuous removal of copper, magnesium, and nickel from industrial wastewater utilizing the natural product yersiniabactin immobilized within a packed-bed column , 2018, Chemical Engineering Journal.

[16]  B. Haltli,et al.  Isolation of Imaqobactin, an Amphiphilic Siderophore from the Arctic Marine Bacterium Variovorax Species RKJM285. , 2018, Journal of natural products.

[17]  J. Kalinowski,et al.  On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2 , 2018, Applied and Environmental Microbiology.

[18]  G. Levicán,et al.  Revisiting the Chrome Azurol S Assay for Various Metal Ions , 2017 .

[19]  D. Tischler,et al.  Thermochelin, a Hydroxamate Siderophore from Thermocrispumagreste DSM 44070 , 2017 .

[20]  G. Levicán,et al.  Genomic Characterization of the Arsenic-Tolerant Actinobacterium, Rhodococcus erythropolis S43 , 2017 .

[21]  V. Belova Development of solvent extraction methods for recovering rare earth metals , 2017, Theoretical Foundations of Chemical Engineering.

[22]  C. Pereira,et al.  Beneficial rhizobacteria immobilized in nanofibers for potential application as soybean seed bioinoculants , 2017, PloS one.

[23]  T. Lorenz,et al.  Valuable Metals-Recovery Processes, Current Trends, and Recycling Strategies. , 2017, Angewandte Chemie.

[24]  H. Heilmeier,et al.  Effects of citric acid and the siderophore desferrioxamine B (DFO-B) on the mobility of germanium and rare earth elements in soil and uptake in Phalaris arundinacea , 2017, International journal of phytoremediation.

[25]  M. Nett,et al.  Variochelins, Lipopeptide Siderophores from Variovorax boronicumulans Discovered by Genome Mining. , 2016, Journal of natural products.

[26]  C. Cheng,et al.  Recovery of indium and gallium from synthetic leach solution of zinc refinery residues using synergistic solvent extraction with LIX 63 and Versatic 10 acid , 2016 .

[27]  Michael A. Skinnider,et al.  An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products , 2015, Nature Communications.

[28]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[29]  Amund N. Løvik,et al.  The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements. , 2015, Environmental science & technology.

[30]  Fangfang Xia,et al.  RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes , 2015, Scientific Reports.

[31]  Elizabeth M. Nolan,et al.  Beyond iron: non-classical biological functions of bacterial siderophores. , 2015, Dalton transactions.

[32]  M. Logacheva,et al.  Complete Genome Sequence of Steroid-Transforming Nocardioides simplex VKM Ac-2033D , 2015, Genome Announcements.

[33]  A. G. Bobrov,et al.  The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice , 2014, Molecular microbiology.

[34]  J. Bargar,et al.  Siderophore-promoted dissolution of chromium from hydroxide minerals. , 2014, Environmental science. Processes & impacts.

[35]  S. Holmström,et al.  Siderophores in environmental research: roles and applications , 2014, Microbial biotechnology.

[36]  Fangfang Xia,et al.  The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) , 2013, Nucleic Acids Res..

[37]  M. Marahiel,et al.  Structural characterization of the heterobactin siderophores from Rhodococcus erythropolis PR4 and elucidation of their biosynthetic machinery. , 2013, Journal of natural products.

[38]  Lynne A. Goodwin,et al.  Genome of the Root-Associated Plant Growth-Promoting Bacterium Variovorax paradoxus Strain EPS , 2013, Genome Announcements.

[39]  M. Nett,et al.  Genomics-driven discovery of taiwachelin, a lipopeptide siderophore from Cupriavidus taiwanensis. , 2012, Organic & biomolecular chemistry.

[40]  W. Meijer,et al.  The Hydroxamate Siderophore Rhequichelin Is Required for Virulence of the Pathogenic Actinomycete Rhodococcus equi , 2012, Infection and Immunity.

[41]  Yongxiang Yang,et al.  Recovery of gallium from Bayer liquor: A review , 2012 .

[42]  J. Crowley,et al.  The siderophore yersiniabactin binds copper to protect pathogens during infection , 2012, Nature chemical biology.

[43]  M. Schlömann,et al.  One-Component Styrene Monooxygenases: An Evolutionary View on a Rare Class of Flavoproteins , 2012, Applied Biochemistry and Biotechnology.

[44]  M. Schlömann,et al.  New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil , 2012, Archives of Microbiology.

[45]  Amy C Rosenzweig,et al.  Chemistry and biology of the copper chelator methanobactin. , 2012, ACS chemical biology.

[46]  J. Schijf,et al.  Stability of YREE complexes with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength , 2011 .

[47]  B. Su,et al.  Fl-DFO molecules@mesoporous silica materials: highly sensitive and selective nanosensor for dosing with iron ions. , 2011, Journal of colloid and interface science.

[48]  Brian C Louden,et al.  Use of Blue Agar CAS Assay for Siderophore Detection , 2011, Journal of microbiology & biology education.

[49]  A. Bhattacharya Siderophore mediated metal uptake by Pseudomonas fluorescens and its comparison to Iron (III) chelation , 2011 .

[50]  M. Marahiel,et al.  Biosynthesis of the siderophore rhodochelin requires the coordinated expression of three independent gene clusters in Rhodococcus jostii RHA1. , 2011, Journal of the American Chemical Society.

[51]  Jani V Anttila,et al.  Is coproporphyrin III a copper-acquisition compound in Paracoccus denitrificans? , 2011, Biochimica et biophysica acta.

[52]  A. Akbarzadeh,et al.  Production of desferrioxamine B (Desferal) using corn steep liquor in Streptomyces pilosus. , 2010, Pakistan journal of biological sciences : PJBS.

[53]  D. Rehder Bioanorganische Chemie des Vanadiums. Leben ohne Vanadium , 2010 .

[54]  Xiaole Kong,et al.  Chemistry and biology of siderophores. , 2010, Natural product reports.

[55]  I. Schalk,et al.  The Pseudomonas aeruginosa Pyochelin-Iron Uptake Pathway and Its Metal Specificity , 2009, Journal of bacteriology.

[56]  C. Tripp,et al.  Determining subnanomolar iron concentrations in oceanic seawater using a siderophore-modified film analyzed by infrared spectroscopy. , 2008, Analytical chemistry.

[57]  Thomas Wichard,et al.  Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores , 2008 .

[58]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[59]  P. Rainey,et al.  Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25 , 2008, BMC Microbiology.

[60]  M. Marahiel,et al.  Siderophore-Based Iron Acquisition and Pathogen Control , 2007, Microbiology and Molecular Biology Reviews.

[61]  T. Lebeau,et al.  Impact of substrates and cell immobilization on siderophore activity by Pseudomonads in a Fe and/or Cr, Hg, Pb containing-medium. , 2007, Journal of hazardous materials.

[62]  Ke Xu,et al.  Study on the recovery of gallium from phosphorus flue dust by leaching with spent sulfuric acid solution and precipitation , 2007 .

[63]  Z. Asfari,et al.  Complexation of oxoanions and cationic metals by the biscatecholate siderophore azotochelin , 2007, JBIC Journal of Biological Inorganic Chemistry.

[64]  T. Lebeau,et al.  Siderophore production by using free and immobilized cells of two pseudomonads cultivated in a medium enriched with Fe and/or toxic metals (Cr, Hg, Pb) , 2006, Biotechnology and bioengineering.

[65]  David A Russell,et al.  Fluorescence-based siderophore biosensor for the determination of bioavailable iron in oceanic waters. , 2006, Analytical chemistry.

[66]  V. Chiș,et al.  IR, Raman and surface-enhanced Raman study of desferrioxamine B and its Fe(III) complex, ferrioxamine B , 2006 .

[67]  G. Challis A Widely Distributed Bacterial Pathway for Siderophore Biosynthesis Independent of Nonribosomal Peptide Synthetases , 2005, Chembiochem : a European journal of chemical biology.

[68]  Y. Hadar,et al.  Immobilization of Fe chelators on sepharose gel and its effect on their chemical properties. , 2003, Journal of agricultural and food chemistry.

[69]  A. Butler,et al.  Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups , 2003 .

[70]  L. Wackett,et al.  Arthrobacter aurescens TC1 Metabolizes Diverse s-Triazine Ring Compounds , 2002, Applied and Environmental Microbiology.

[71]  A. Butler,et al.  Photochemical cycling of iron in the surface ocean mediated by microbial iron(iii)-binding ligands , 2001, Nature.

[72]  C. Carrano,et al.  Heterobactins: A new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxamate and catecholate donor groups , 2001, Biometals.

[73]  Y. Hadar,et al.  Rapid Method for Accurate Determination of Colorless Siderophores and Synthetic Chelates , 1995 .

[74]  M. Fukuda,et al.  A Novel Transformation of Polychlorinated Biphenyls by Rhodococcus sp. Strain RHA1 , 1995, Applied and environmental microbiology.

[75]  D. Zuberer,et al.  Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria , 1991, Biology and Fertility of Soils.

[76]  R. J. Keller,et al.  Spectrophotometric and ESR evidence for vanadium(IV) deferoxamine complexes. , 1991, Journal of inorganic biochemistry.

[77]  D. Rehder Bioanorganische Chemie des Vanadiums , 1991 .

[78]  R. Hancock,et al.  Metal Ion Recognition in Ligands with Negatively Charged Oxygen Donor Groups. Complexation of Fe(III), Ga(III), In(III), Al(III), and Other Highly Charged Metal Ions. , 1989 .

[79]  R. Hancock,et al.  Metal ion recognition in ligands with negatively charged oxygen donor groups. Complexation of iron(III), gallium(III), indium(III), aluminum(III), and other highly charged metal ions , 1989 .

[80]  K. K. Rao,et al.  Production of pyoverdine, the fluorescent pigment of Pseudomonas aeruginosa PAO1 , 1985 .

[81]  H. Rogers,et al.  Antibacterial effect of scandium and indium complexes of enterochelin on Klebsiella pneumoniae , 1980, Antimicrobial Agents and Chemotherapy.

[82]  J. M. Meyer,et al.  The Fluorescent Pigment of Pseudomonas fluorescens : Biosynthesis, Purification and Physicochemical Properties , 1978 .

[83]  T. Emery Role of ferrichrome as a ferric ionophore in Ustilago sphaerogena. , 1971, Biochemistry.

[84]  S. K. Garg,et al.  Mycoremediation: An Alternative Treatment Strategy for Heavy Metal-Laden Wastewater , 2017 .

[85]  B. Schreiner,et al.  Solvent Extraction in Metal Hydrometallurgy , 2016 .

[86]  Y. Hadar,et al.  FeDFOB and FeEDDHA immobilized on Sepharose gels as an Fe sources to plants , 2011, Plant and Soil.

[87]  H. Budzikiewicz Microbial siderophores. , 2010, Fortschritte der Chemie organischer Naturstoffe = Progress in the chemistry of organic natural products. Progres dans la chimie des substances organiques naturelles.

[88]  L. Golovleva,et al.  Degradation of 2,4,5-Trichlorophenoxyacetic acid by a Nocardioides simplex culture , 2004, Biodegradation.

[89]  K. Raymond,et al.  8.6 – Siderophores and Transferrins , 2003 .

[90]  C. Cámara,et al.  Pyoverdin-doped sol–gel glass for the spectrofluorimetric determination of iron(III) , 1995 .

[91]  C. D. Cox,et al.  Deferration of laboratory media and assays for ferric and ferrous ions. , 1994, Methods in enzymology.

[92]  J. Neilands,et al.  Universal chemical assay for the detection and determination of siderophores. , 1987, Analytical biochemistry.

[93]  S. Luterotti,et al.  Spectrophotometric determination of vanadium(V) with desferrioxamine B , 1986 .

[94]  S. Margel,et al.  Iron detoxification by haemoperfusion through deferoxamine-conjugated agarose-polyacrolein microsphere beads. , 1985, Biomaterials.