Argyres-Douglas matter and S-duality. Part II
暂无分享,去创建一个
[1] S. Benvenuti,et al. Lagrangians for generalized Argyres-Douglas theories , 2017, 1707.05113.
[2] A. Sciarappa,et al. N$$ \mathcal{N} $$ =1 Lagrangians for generalized Argyres-Douglas theories , 2017, 1707.04751.
[3] S. Gukov. Trisecting non-Lagrangian theories , 2017, 1707.01515.
[4] Simone Giacomelli,et al. Abelianization and sequential confinement in 2 + 1 dimensions , 2017, 1706.04949.
[5] S. Benvenuti,et al. Supersymmetric Gauge Theories with Decoupled Operators and Chiral Ring Stability. , 2017, Physical review letters.
[6] M. Buican,et al. On irregular singularity wave functions and superconformal indices , 2017, Journal of High Energy Physics.
[7] Ke Ye,et al. Argyres-Douglas theories, chiral algebras and wild Hitchin characters , 2017, Journal of High Energy Physics.
[8] K. Maruyoshi,et al. N=1 Deformations and RG Flows of N=2 SCFTs , 2016, 1607.04281.
[9] K. Maruyoshi,et al. Enhancement of Supersymmetry via Renormalization Group Flow and the Superconformal Index. , 2016, Physical review letters.
[10] Ke Ye,et al. Equivariant Verlinde Algebra from Superconformal Index and Argyres–Seiberg Duality , 2016, 1605.06528.
[11] Jaewon Song. Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT , 2015, 1509.06730.
[12] Y. Wang,et al. Classification of Argyres-Douglas theories from M5 branes , 2015, 1509.00847.
[13] Clay Córdova,et al. Schur indices, BPS particles, and Argyres-Douglas theories , 2015, 1506.00265.
[14] M. Buican,et al. On the superconformal index of Argyres–Douglas theories , 2015, 1505.05884.
[15] C. Vafa,et al. Geometric Engineering, Mirror Symmetry and 6d (1,0) -> 4d, N=2 , 2015, 1504.08348.
[16] C. Papageorgakis,et al. Argyres-Douglas theories and S-duality , 2014, 1411.6026.
[17] J. Distler,et al. Tinkertoys for the E6 theory , 2014, 1403.4604.
[18] L. Rastelli,et al. Infinite Chiral Symmetry in Four Dimensions , 2013, 1312.5344.
[19] J. Distler,et al. Gaiotto duality for the twisted A2N −1 series , 2012, 1212.3952.
[20] P. Levy,et al. Gradings of positive rank on simple Lie algebras , 2012, 1307.5765.
[21] È. Vinberg,et al. Cyclic elements in semisimple lie algebras , 2012, Transformation Groups.
[22] Dan Xie. General Argyres-Douglas theory , 2012, 1204.2270.
[23] J. Distler,et al. Nilpotent orbits and codimension-two defects of 6d N=(2,0) theories , 2012, 1203.2930.
[24] G. Bonelli,et al. Wild quiver gauge theories , 2011, 1112.1691.
[25] J. Distler,et al. Tinkertoys for the DN series , 2011, 1106.5410.
[26] D. Nanopoulos,et al. More three dimensional mirror pairs , 2010, 1011.1911.
[27] Yuji Tachikawa. S-duality via outer-automorphism twists , 2010, 1009.0339.
[28] J. Distler,et al. Tinkertoys for Gaiotto duality , 2010, 1008.5203.
[29] Yuji Tachikawa,et al. Mirrors of 3d Sicilian theories , 2010, 1007.0992.
[30] Mark Reeder. Torsion automorphisms of simple Lie algebras , 2010 .
[31] Shlomo S. Razamat,et al. The superconformal index of the E6 SCFT , 2010, 1003.4244.
[32] Yuji Tachikawa. Six-dimensional D N theory and four-dimensional SO-USp quivers , 2009, 0905.4074.
[33] Willem A. De Graaf,et al. Induced Nilpotent Orbits of the Simple Lie Algebras of Exceptional Type , 2009, Georgian Mathematical Journal.
[34] D. Gaiotto. Preprint Typeset in Jhep Style -hyper Version N = 2 Dualities , 2022 .
[35] A. Shapere,et al. Central charges of 𝒩 = 2 superconformal field theories in four dimensions , 2008, Journal of High Energy Physics.
[36] P. Argyres,et al. Infinite coupling duals of N=2 gauge theories and new rank 1 superconformal field theories , 2007, 0712.2028.
[37] N. Seiberg,et al. S-duality in N=2 supersymmetric gauge theories , 2007, 0711.0054.
[38] Pramod N. Achar,et al. An order-reversing duality map for conjugacy classes in Lusztig's canonical quotient , 2002, math/0203082.
[39] P. Achar,et al. Local systems on nilpotent orbits and weighted Dynkin diagrams , 2002, math/0201248.
[40] E. Sommers. Lusztig's canonical quotient and generalized duality , 2001, math/0104162.
[41] M. Douglas,et al. New Phenomena in SU(3) Supersymmetric Gauge Theory , 1995, hep-th/9505062.
[42] Gisela Kempken. Induced Conjugacy Classes in Classical Lie-Algebras , 1983 .
[43] T. A. Springer. Regular elements of finite reflection groups , 1974 .
[44] V. Kats,et al. Automorphisms of finite order of semisimple Lie algebras , 1969 .
[45] M. Buican,et al. N = 2 S -duality revisited , 2017 .
[46] Peng Zhao,et al. Central charges and RG flow of strongly-coupled N = 2 theory , 2013 .
[47] W. Mcgovern. Nilpotent Orbits In Semisimple Lie Algebra : An Introduction , 1993 .
[48] E. B. Dynkin,et al. Semisimple subalgebras of semisimple Lie algebras , 1957 .