Optimal Edge Ranking of Trees in Linear Time

Abstract. Given a tree, finding an optimal node ranking and finding an optimal edge ranking are interesting computational problems. The former problem already has a linear time algorithm in the literature. For the latter, only recently polynomial time algorithms have been revealed, and the best known algorithm requires more than quadratic time. In this paper we present a new approach for finding an optimal edge ranking of a tree, improving the time complexity to linear.

[1]  Takao Nishizeki,et al.  An Efficient Algorithm for Edge-Ranking Trees , 1994, ESA.

[2]  Takao Nishizeki,et al.  Finding optimal edge-rankings of trees , 1995, SODA '95.

[3]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[4]  H. D. Ratliff,et al.  Optimal Node Ranking of Trees , 1988, Inf. Process. Lett..

[5]  Alejandro A. Schäffer,et al.  Optimal Node Ranking of Trees in Linear Time , 1989, Inf. Process. Lett..

[6]  Takao Nishizeki,et al.  Generalized Edge-Rankings of Trees , 1995 .

[7]  Harry R. Lewis,et al.  Data Structures and Their Algorithms , 1991 .

[8]  Tak Wah Lam,et al.  Edge Ranking of Graphs Is Hard , 1998, Discret. Appl. Math..

[9]  Klaus Jansen,et al.  Rankings of Graphs , 1998, SIAM J. Discret. Math..

[10]  Alejandro A. Schäffer,et al.  Optimal edge ranking of trees in polynomial time , 1993, SODA '93.

[11]  Donna Crystal Llewellyn,et al.  Local optimization on graphs , 1989, Discret. Appl. Math..

[12]  Jeffrey D Ullma Computational Aspects of VLSI , 1984 .

[13]  Ananth V. Iyer,et al.  On an edge ranking problem of trees and graphs , 1991, Discret. Appl. Math..

[14]  Tw Lam,et al.  The NP-completeness of edge ranking , 1996 .

[15]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.

[16]  B. M. Fulk MATH , 1992 .

[17]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.

[18]  Suzanne M. Seager,et al.  Ordered colourings , 1995, Discret. Math..