Chemie der Cyborgs – zur Verknüpfung technischer Systeme mit Lebewesen

Die Bezeichnung “Cyborg” ist ein Akronym fur einen kybernetischen Organismus, der eine Chimare aus einem lebenden Organismus und einer Maschine beschreibt. Infolge der zahlreichen Anwendungen intrakorporaler medizinischer Systeme sind Cyborgs nicht mehr nur Gegenstand der Science-Fiction, sondern technisch gesehen tatsachlich bereits ein Teil unserer Gesellschaft. In diesem Aufsatz fassen wir die Entwicklungen bei modernen Prothesen und Schnittstellen zwischen Gehirn und Maschine (brain–machine interface; BMI) zusammen und diskutieren die jungsten Entwicklungen bei implantierbaren Systemen mit einem Fokus auf integrierter biokompatibler Elektronik und Mikrofluidik, die fur die Kommunikation und Kontrolle von Organismen benutzt werden. Wir beschreiben neueste Beispiele von Tier-Cyborgs und deren Relevanz fur die biomedizinische Grundlagen- und Anwendungsforschung sowie fur die Bioethik in diesem neuen und aufregenden Bereich an der Schnittstelle zwischen Chemie, Biomedizin und den Ingenieurwissenschaften.

[1]  David L. Kaplan,et al.  Biocompatible Silk Printed Optical Waveguides , 2009 .

[2]  Robert Langer,et al.  Small-scale systems for in vivo drug delivery , 2003, Nature Biotechnology.

[3]  P. Cinquin,et al.  A Glucose BioFuel Cell Implanted in Rats , 2010, PloS one.

[4]  S. Adamo Modulating the Modulators: Parasites, Neuromodulators and Host Behavioral Change , 2003, Brain, Behavior and Evolution.

[5]  Charles M. Lieber,et al.  Nanowire nanoelectronics: Building interfaces with tissue and cells at the natural scale of biology , 2013 .

[6]  H. Flor,et al.  The thought translation device (TTD) for completely paralyzed patients. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[7]  R. Normann,et al.  Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex , 1998, Journal of Neuroscience Methods.

[8]  Barbara Saccà,et al.  DNA origami: the art of folding DNA. , 2012, Angewandte Chemie.

[9]  D. Trentham,et al.  Properties and Uses of Photoreactive Caged Compounds , 1989 .

[10]  Hirotaka Sato,et al.  Remote Radio Control of Insect Flight , 2009, Frontiers in integrative neuroscience.

[11]  Hendrik Schröder,et al.  Chemische Verfahren zur Herstellung von Proteinbiochips , 2008 .

[12]  H. Waldmann,et al.  Chemical strategies for generating protein biochips. , 2008, Angewandte Chemie.

[13]  M. Schaldach,et al.  In vivo electrochemical power generation. , 1970, Transactions - American Society for Artificial Internal Organs.

[14]  V. S. Mallela,et al.  Trends in Cardiac Pacemaker Batteries , 2004, Indian pacing and electrophysiology journal.

[15]  C. Niemeyer,et al.  DNA‐Origami: die Kunst, DNA zu falten , 2012 .

[16]  K. Kilgore,et al.  Implantable functional neuromuscular stimulation in the tetraplegic hand. , 1989, The Journal of hand surgery.

[17]  Lei Li,et al.  A multi-channel telemetry system for brain microstimulation in freely roaming animals , 2004, Journal of Neuroscience Methods.

[18]  Ansgar Waldbaur,et al.  Maskless projection lithography for the fast and flexible generation of grayscale protein patterns. , 2012, Small.

[19]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[20]  Miguel A. L. Nicolelis,et al.  Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex , 1999, Nature Neuroscience.

[21]  F. Mussa-Ivaldi,et al.  Brain–machine interfaces: computational demands and clinical needs meet basic neuroscience , 2003, Trends in Neurosciences.

[22]  Christof M Niemeyer,et al.  Rational design of DNA nanoarchitectures. , 2006, Angewandte Chemie.

[23]  Tal Dvir,et al.  Nanotechnological strategies for engineering complex tissues. , 2020, Nature nanotechnology.

[24]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[25]  Roberta Kwok,et al.  Neuroprosthetics: Once more, with feeling , 2013, Nature.

[26]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[27]  E. Katz,et al.  Implanted biofuel cell operating in a living snail. , 2012, Journal of the American Chemical Society.

[28]  Miguel A. L. Nicolelis,et al.  Actions from thoughts , 2001, Nature.

[29]  Shennan A. Weiss,et al.  Rat navigation guided by remote control , 2002 .

[30]  Volker M. Koch,et al.  Energy harvesting through arterial wall deformation: design considerations for a magneto-hydrodynamic generator , 2012, Medical & Biological Engineering & Computing.

[31]  Miriam Zacksenhouse,et al.  Cortical Ensemble Adaptation to Represent Velocity of an Artificial Actuator Controlled by a Brain-Machine Interface , 2005, The Journal of Neuroscience.

[32]  C M Light,et al.  Intelligent multifunction myoelectric control of hand prostheses , 2002, Journal of medical engineering & technology.

[33]  Massimo Leone,et al.  Deep brain stimulation in headache , 2006, The Lancet Neurology.

[34]  John A Rogers,et al.  Silicon electronics on silk as a path to bioresorbable, implantable devices. , 2009, Applied physics letters.

[35]  Shaoyi Jiang,et al.  Zwitterionic hydrogels implanted in mice resist the foreign-body reaction , 2013, Nature Biotechnology.

[36]  Hui Wang,et al.  Review of Research Progress in Biorobot , 2013 .

[37]  E. Sletten,et al.  Bioorthogonale Chemie – oder: in einem Meer aus Funktionalität nach Selektivität fischen , 2009 .

[38]  Udo Feldkamp,et al.  Rationaler Entwurf von DNA‐Nanoarchitekturen , 2006 .

[39]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[40]  C. Niemeyer Halbsynthetische DNA‐Protein‐Konjugate für Biosensorik und Nanofabrikation , 2010 .

[41]  R. Kanzaki,et al.  Changing Motor Patterns of the 3rd Axillary Muscle Activities Associated with Longitudinal Control in Freely Flying Hawkmoths , 2004, Zoological science.

[42]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[43]  N. Seeman DNA in a material world , 2003, Nature.

[44]  C. Rorabeck,et al.  The operation of the century: total hip replacement , 2007, The Lancet.

[45]  Arianna Menciassi,et al.  Wearable and implantable pancreas substitutes , 2013, Journal of Artificial Organs.

[46]  Fischer,et al.  Tegula function during free locust flight in relation to motor pattern, flight speed and aerodynamic output , 1999, The Journal of experimental biology.

[47]  H. Flor,et al.  A spelling device for the paralysed , 1999, Nature.

[48]  Nicolas Y. Masse,et al.  Reach and grasp by people with tetraplegia using a neurally controlled robotic arm , 2012, Nature.

[49]  H. Berger Über das Elektrenkephalogramm des Menschen , 1933, Archiv für Psychiatrie und Nervenkrankheiten.

[50]  Marc E. Nelson,et al.  Bioresorbable airway splint created with a three-dimensional printer. , 2013, The New England journal of medicine.

[51]  David Erickson,et al.  Engineering insect flight metabolics using immature stage implanted microfluidics. , 2009, Lab on a chip.

[52]  F. Horak,et al.  Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. , 2011, Archives of neurology.

[53]  David Erickson,et al.  Implantable microfluidic and electronic systems for insect flight manipulation , 2012 .

[54]  B. Zemelman,et al.  Photochemical gating of heterologous ion channels: Remote control over genetically designated populations of neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  John A Rogers,et al.  Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials , 2006, Science.

[56]  Yonggang Huang,et al.  Multifunctional Epidermal Electronics Printed Directly Onto the Skin , 2013, Advanced materials.

[57]  J. Simon,et al.  Surface modification of implants in long bone , 2012, Biomatter.

[58]  Tal Dvir,et al.  Nanowired three dimensional cardiac patches , 2011, Nature nanotechnology.

[59]  M. Grinstaff,et al.  Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. , 2012, Chemical reviews.

[60]  J. Kennedy,et al.  A subminiature implantable self-powered carciac pacemaker. Experimental observations. , 1966, The Annals of thoracic surgery.

[61]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[62]  A. Chandrakasan,et al.  Energy extraction from the biologic battery in the inner ear , 2012, Nature Biotechnology.

[63]  Roland Thewes,et al.  Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array. , 2012, Journal of neurophysiology.

[64]  Charles M. Lieber,et al.  Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. , 2012, Nature materials.

[65]  H. Fields,et al.  Stimulation of internal capsule for relief of chronic pain. , 1974, Journal of neurosurgery.

[66]  K. Lafleur,et al.  Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface , 2013, Journal of neural engineering.

[67]  Megan L. McCain,et al.  A tissue-engineered jellyfish with biomimetic propulsion , 2012, Nature Biotechnology.

[68]  L. Dal Negro,et al.  Spectral analysis of induced color change on periodically nanopatterned silk films. , 2009, Optics express.

[69]  E. Fetz Operant Conditioning of Cortical Unit Activity , 1969, Science.

[70]  Ying Wu,et al.  Vision-Based Gesture Recognition: A Review , 1999, Gesture Workshop.

[71]  Brian Litt,et al.  Drug discovery: A jump-start for electroceuticals , 2013, Nature.

[72]  C. Niemeyer Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. , 2010, Angewandte Chemie.

[73]  G. Feng,et al.  Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits , 2006, The Journal of Neuroscience.

[74]  G. Miesenböck,et al.  Optogenetic control of cells and circuits. , 2011, Annual review of cell and developmental biology.

[75]  Jens Clausen,et al.  Man, machine and in between , 2009, Nature.

[76]  Andrew S. Whitford,et al.  Cortical control of a prosthetic arm for self-feeding , 2008, Nature.

[77]  Michael C. McAlpine,et al.  3D Printed Bionic Ears , 2013, Nano letters.

[78]  Yonggang Huang,et al.  Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy , 2012, Proceedings of the National Academy of Sciences.

[79]  Edward W. Felten The era of infinite storage. , 2010 .

[80]  Marco Piccolino,et al.  Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani , 1998, Brain Research Bulletin.

[81]  L. Girard,et al.  False teeth of the Roman world , 1998, Nature.

[82]  M. Schaldach BIOELECTRIC ENERGY SOURCES FOR CARDIAC PACING , 1969, Annals of the New York Academy of Sciences.

[83]  Hirotaka Sato,et al.  Recent Developments in the Remote Radio Control of Insect Flight , 2010, Front. Neurosci..

[84]  Joseph S. Fernandez-Moure,et al.  Silicon Micro‐ and Nanofabrication for Medicine , 2013, Advanced healthcare materials.