An Unusual Transmission Spectrum for the Sub-Saturn KELT-11b Suggestive of a Subsolar Water Abundance

We present an optical-to-infrared transmission spectrum of the inflated sub-Saturn KELT-11b measured with the Transiting Exoplanet Survey Satellite (TESS), the Hubble Space Telescope (HST) Wide Field Camera 3 G141 spectroscopic grism, and the Spitzer Space Telescope (Spitzer) at 3.6 μm, in addition to a Spitzer 4.5 μm secondary eclipse. The precise HST transmission spectrum notably reveals a low-amplitude water feature with an unusual shape. Based on free-retrieval analyses with varying molecular abundances, we find strong evidence for water absorption. Depending on model assumptions, we also find tentative evidence for other absorbers (HCN, TiO, and AlO). The retrieved water abundance is generally ≲0.1× solar (0.001–0.7× solar over a range of model assumptions), several orders of magnitude lower than expected from planet formation models based on the solar system metallicity trend. We also consider chemical-equilibrium and self-consistent 1D radiative-convective equilibrium model fits and find that they, too, prefer low metallicities ([M/H] ≲ −2, consistent with the free-retrieval results). However, all of the retrievals should be interpreted with some caution because they either require additional absorbers that are far out of chemical equilibrium to explain the shape of the spectrum or are simply poor fits to the data. Finally, we find that the Spitzer secondary eclipse is indicative of full heat redistribution from KELT-11b’s dayside to nightside, assuming a clear dayside. These potentially unusual results for KELT-11b’s composition are suggestive of new challenges on the horizon for atmosphere and formation models in the face of increasingly precise measurements of exoplanet spectra.

[1]  John P. Ahlers,et al.  KELT-9 b’s Asymmetric TESS Transit Caused by Rapid Stellar Rotation and Spin–Orbit Misalignment , 2020, The Astronomical Journal.

[2]  T. Barman,et al.  Updated Parameters and a New Transmission Spectrum of HD 97658b , 2020, The Astronomical Journal.

[3]  N. Lewis,et al.  Why Is it So Cold in Here? Explaining the Cold Temperatures Retrieved from Transmission Spectra of Exoplanet Atmospheres , 2020, The Astrophysical Journal.

[4]  J. Leconte,et al.  Strong biases in retrieved atmospheric composition caused by day–night chemical heterogeneities , 2020, Astronomy & Astrophysics.

[5]  M. López-Morales,et al.  Confirmation of WASP-107b’s Extended Helium Atmosphere with Keck II/NIRSPEC , 2020, The Astronomical Journal.

[6]  D. Deming,et al.  Abundance measurements of H2O and carbon-bearing species in the atmosphere of WASP-127b confirm its supersolar metallicity , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  E. Agol,et al.  Analytic Planetary Transit Light Curves and Derivatives for Stars with Polynomial Limb Darkening , 2019, The Astronomical Journal.

[8]  G. Nowak,et al.  The GTC exoplanet transit spectroscopy survey , 2018, Astronomy & Astrophysics.

[9]  C. Helling,et al.  Dust in brown dwarfs and extra-solar planets , 2008, Astronomy & Astrophysics.

[10]  F. Spiegelman,et al.  Mass–Metallicity Trends in Transiting Exoplanets from Atmospheric Abundances of H2O, Na, and K , 2019, The Astrophysical Journal.

[11]  J. Fortney,et al.  Do Metal-rich Stars Make Metal-rich Planets? New Insights on Giant Planet Formation from Host Star Abundances , 2019, The Astronomical Journal.

[12]  D. Deming,et al.  A super-solar metallicity atmosphere for WASP-127b revealed by transmission spectroscopy from HST and Spitzer , 2019, 1911.08859.

[13]  M. Line,et al.  Exploring Exoplanet Cloud Assumptions in JWST Transmission Spectra , 2019, The Astrophysical Journal.

[14]  I. Skillen,et al.  LRG-BEASTS: Transmission Spectroscopy and Retrieval Analysis of the Highly Inflated Saturn-mass Planet WASP-39b , 2019, The Astronomical Journal.

[15]  F. Spiegelman,et al.  New study of the line profiles of sodium perturbed by H2 , 2019, Astronomy & Astrophysics.

[16]  Jason D. Eastman,et al.  EXOFASTv2: A public, generalized, publication-quality exoplanet modeling code , 2019, 1907.09480.

[17]  V. Ivanov,et al.  High-resolution Transmission Spectroscopy of Four Hot Inflated Gas Giant Exoplanets , 2019, The Astronomical Journal.

[18]  Laura K. McKemmish,et al.  ExoMol molecular line lists – XXXIII. The spectrum of Titanium Oxide , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  N. Madhusudhan,et al.  On Degeneracies in Retrievals of Exoplanetary Transmission Spectra , 2019, The Astronomical Journal.

[20]  Paul A. Dalba,et al.  Spitzer Detection of the Transiting Jupiter-analog Exoplanet Kepler-167e , 2019, The Astrophysical Journal.

[21]  F. Selsis,et al.  Effects of a fully 3D atmospheric structure on exoplanet transmission spectra: retrieval biases due to day–night temperature gradients , 2019, Astronomy & Astrophysics.

[22]  C. Helling,et al.  Sparkling nights and very hot days on WASP-18b: the formation of clouds and the emergence of an ionosphere , 2019, Astronomy & Astrophysics.

[23]  D. Ehrenreich,et al.  High-resolution confirmation of an extended helium atmosphere around WASP-107b , 2019, Astronomy & Astrophysics.

[24]  G. Chabrier,et al.  New Models of Jupiter in the Context of Juno and Galileo , 2019, The Astrophysical Journal.

[25]  J. Fortney,et al.  Connecting Giant Planet Atmosphere and Interior Modeling: Constraints on Atmospheric Metal Enrichment , 2018, The Astrophysical Journal.

[26]  David P. Fleming,et al.  starry: Analytic Occultation Light Curves , 2018, 1810.06559.

[27]  M. Line,et al.  The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres , 2018, The Astrophysical Journal.

[28]  B. Scott Gaudi,et al.  Spitzer Phase Curves of KELT-1b and the Signatures of Nightside Clouds in Thermal Phase Observations , 2018, The Astronomical Journal.

[29]  Jessie L. Dotson,et al.  Lightkurve: Kepler and TESS time series analysis in Python , 2018 .

[30]  R. MacDonald,et al.  H2O abundances and cloud properties in ten hot giant exoplanets , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  K. Heng,et al.  Retrieval analysis of 38 WFC3 transmission spectra and resolution of the normalization degeneracy , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  T. Barman,et al.  Ground- and Space-based Detection of the Thermal Emission Spectrum of the Transiting Hot Jupiter KELT-2Ab , 2018, The Astronomical Journal.

[33]  D. Apai,et al.  Retrieval of planetary and stellar properties in transmission spectroscopy with Aura , 2018, Monthly Notices of the Royal Astronomical Society.

[34]  S. Udry,et al.  Helium in the eroding atmosphere of an exoplanet , 2018, Nature.

[35]  Jacob L. Bean,et al.  Global Climate and Atmospheric Composition of the Ultra-hot Jupiter WASP-103b from HST and Spitzer Phase Curve Observations , 2018, The Astronomical Journal.

[36]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[37]  D. Deming,et al.  Confirming Variability in the Secondary Eclipse Depth of the Super-Earth 55 Cancri e , 2018, 1804.03735.

[38]  Daniel Foreman-Mackey,et al.  Scalable Backpropagation for Gaussian Processes using Celerite , 2018, 1801.10156.

[39]  Jacob L. Bean,et al.  H− Opacity and Water Dissociation in the Dayside Atmosphere of the Very Hot Gas Giant WASP-18b , 2018, 1801.02489.

[40]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[41]  G. Tucker,et al.  Community Targets of JWST’s Early Release Science Program: Evaluation of WASP-63b , 2017, The Astronomical Journal.

[42]  J. Laskar,et al.  The CHEOPS mission , 2014, 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace).

[43]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[44]  Nikole K. Lewis,et al.  The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint , 2017, 1711.10529.

[45]  Laura Kreidberg,et al.  Water, High-altitude Condensates, and Possible Methane Depletion in the Atmosphere of the Warm Super-Neptune WASP-107b , 2017, 1709.08635.

[46]  D. Deming,et al.  Statistical Analysis of Hubble/WFC3 Transit Spectroscopy of Extrasolar Planets , 2017, 1709.07385.

[47]  Laura Kreidberg,et al.  Trends in Atmospheric Properties of Neptune-size Exoplanets , 2017, 1708.00016.

[48]  N. Madhusudhan,et al.  genesis: new self-consistent models of exoplanetary spectra , 2017, 1706.02302.

[49]  Jacob L. Bean,et al.  An Observational Diagnostic for Distinguishing between Clouds and Haze in Hot Exoplanet Atmospheres , 2017, 1705.05847.

[50]  C. Clarke,et al.  Chemical enrichment of giant planets and discs due to pebble drift , 2017, 1705.03305.

[51]  I. P. Waldmann,et al.  A Population Study of Gaseous Exoplanets , 2017, 1704.05413.

[52]  Daniel Foreman-Mackey,et al.  Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.

[53]  Yifan Zhou,et al.  A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs , 2017, 1703.01301.

[54]  Miguel de Val-Borro,et al.  HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography , 2017, The Astronomical Journal.

[55]  R. G. West,et al.  The discoveries of WASP-91b, WASP-105b and WASP-107b: two warm Jupiters and a planet in the transition region between ice giants and gas giants , 2017, 1701.03776.

[56]  R. MacDonald,et al.  HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water , 2017, 1701.01113.

[57]  J. Pepper,et al.  Determining Empirical Stellar Masses and Radii from Transits and Gaia Parallaxes as Illustrated by Spitzer Observations of KELT-11b , 2016, 1612.04379.

[58]  Keivan G. Stassun,et al.  KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V = 8 Subgiant HD 93396 , 2016, 1607.01755.

[59]  P. Tenenbaum,et al.  Kepler Data Processing Handbook: Transiting Planet Search , 2017 .

[60]  Nikku Madhusudhan,et al.  Atmospheric signatures of giant exoplanet formation by pebble accretion , 2016, 1611.03083.

[61]  E. Bergin,et al.  EXCESS C/O AND C/H IN OUTER PROTOPLANETARY DISK GAS , 2016, 1610.07859.

[62]  J. Ahlers GRAVITY-DARKENED SEASONS: INSOLATION AROUND RAPID ROTATORS , 2016, 1609.07106.

[63]  Laura K. McKemmish,et al.  ExoMol line lists – XVIII. The high-temperature spectrum of VO , 2016, 1609.06120.

[64]  Christoph Mordasini,et al.  THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS , 2016, 1609.03019.

[65]  R. G. West,et al.  From Dense Hot Jupiter to Low Density Neptune: The Discovery of WASP-127b, WASP-136b and WASP-138b , 2016, 1607.07859.

[66]  Peter Tenenbaum,et al.  The TESS science processing operations center , 2016, Astronomical Telescopes + Instrumentation.

[67]  F. Spiegelman,et al.  K–H 2 line shapes for the spectra of cool brown dwarfs , 2016 .

[68]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[69]  Keivan G. Stassun,et al.  ASTROIMAGEJ: IMAGE PROCESSING AND PHOTOMETRIC EXTRACTION FOR ULTRA-PRECISE ASTRONOMICAL LIGHT CURVES , 2016, 1601.02622.

[70]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[71]  J. Livingston,et al.  A CHARACTERISTIC TRANSMISSION SPECTRUM DOMINATED BY H2O APPLIES TO THE MAJORITY OF HST/WFC3 EXOPLANET OBSERVATIONS , 2015, 1512.00151.

[72]  Michael R. Line,et al.  THE INFLUENCE OF NONUNIFORM CLOUD COVER ON TRANSIT TRANSMISSION SPECTRA , 2015, 1511.09443.

[73]  J. Fortney,et al.  THE MASS–METALLICITY RELATION FOR GIANT PLANETS , 2015, 1511.07854.

[74]  E. Chiang,et al.  BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS , 2015, 1510.08855.

[75]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[76]  M. Marley,et al.  UNIFORM ATMOSPHERIC RETRIEVAL ANALYSIS OF ULTRACOOL DWARFS. I. CHARACTERIZING BENCHMARKS, Gl 570D AND HD 3651B , 2015, 1504.06670.

[77]  J. Tennyson,et al.  ExoMol molecular line lists: IX The spectrum of AlO , 2015, 1504.02938.

[78]  Drake Deming,et al.  SPITZER SECONDARY ECLIPSES OF THE DENSE, MODESTLY-IRRADIATED, GIANT EXOPLANET HAT-P- 20 b ?> USING PIXEL-LEVEL DECORRELATION , 2014, 1411.7404.

[79]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[80]  M. Marley,et al.  METHANE, CARBON MONOXIDE, AND AMMONIA IN BROWN DWARFS AND SELF-LUMINOUS GIANT PLANETS , 2014, 1408.6283.

[81]  Nikku Madhusudhan,et al.  TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION , 2014, 1408.3668.

[82]  Willy Benz,et al.  From planetesimals to planets: volatile molecules , 2014, 1407.7282.

[83]  Drake Deming,et al.  H2O ABUNDANCES IN THE ATMOSPHERES OF THREE HOT JUPITERS , 2014, 1407.6054.

[84]  Jacob L. Bean,et al.  HUBBLE SPACE TELESCOPE NEAR-IR TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH HD 97658B , 2014, 1403.4602.

[85]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[86]  Sergei N. Yurchenko,et al.  ExoMol line lists IV: The rotation-vibration spectrum of methane up to 1500 K , 2014, 1401.4852.

[87]  T. Guillot,et al.  A non-grey analytical model for irradiated atmospheres - I. Derivation , 2013, 1311.6597.

[88]  Jonathan Tennyson,et al.  ExoMol line lists - III. An improved hot rotation-vibration line list for HCN and HNC , 2013, 1311.1328.

[89]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[90]  Martin C. Stumpe,et al.  Multiscale Systematic Error Correction via Wavelet-Based Bandsplitting in Kepler Data , 2014 .

[91]  Daniel J. Frohman,et al.  ExoMol molecular line lists V: the ro-vibrational spectra of NaCl and KCl , 2013, 1403.7952.

[92]  D. Kipping Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.

[93]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[94]  David M. Kipping,et al.  Parametrizing the exoplanet eccentricity distribution with the beta distribution. , 2013, 1306.4982.

[95]  Christoph Mordasini,et al.  A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS , 2013, 1306.4329.

[96]  Eric L. N. Jensen,et al.  Tapir: A web interface for transit/eclipse observability , 2013 .

[97]  Andreas Seifahrt,et al.  TRANSMISSION SPECTROSCOPY OF THE HOT JUPITER WASP-12b FROM 0.7 TO 5 μm , 2013, 1305.1670.

[98]  D. Crisp,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. I. A COMPARISON OF ATMOSPHERIC RETRIEVAL TECHNIQUES , 2013, 1304.5561.

[99]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[100]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[101]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[102]  Laurence S. Rothman,et al.  New section of the HITRAN database: Collision-induced absorption (CIA) , 2012 .

[103]  Martin C. Stumpe,et al.  Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction , 2012, 1203.1383.

[104]  Jeffery J. Kolodziejczak,et al.  Kepler Presearch Data Conditioning I—Architecture and Algorithms for Error Correction in Kepler Light Curves , 2012, 1203.1382.

[105]  Thomas J. Loredo,et al.  TRANSIT AND ECLIPSE ANALYSES OF THE EXOPLANET HD 149026b USING BLISS MAPPING , 2011, 1108.2057.

[106]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[107]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[108]  R. G. West,et al.  WASP-39b: a highly inflated Saturn-mass planet orbiting a late G-type star , 2011, 1102.1375.

[109]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[110]  J. Tennyson,et al.  A variationally computed line list for hot NH3 , 2010, 1011.1569.

[111]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[112]  P. Bernath,et al.  HIGH-RESOLUTION 1.6 μm SPECTRA OF FeH IN M AND L DWARFS, , 2010 .

[113]  John Asher Johnson,et al.  HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES , 2010, 1006.4161.

[114]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[115]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[116]  J. Tennyson,et al.  Improved HCN/HNC linelist, model atmospheres and synthetic spectra for WZ Cas , 2005, astro-ph/0512363.

[117]  J. Davy Kirkpatrick,et al.  New spectral types L and T , 2005 .

[118]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[119]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[120]  D. Schwenke Opacity of TiO from a coupled electronic state calculation parametrized by abinitio and experimental data , 1998 .

[121]  Harry Partridge,et al.  The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data , 1997 .

[122]  David G. Vass,et al.  Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE) , 1997 .

[123]  J. Ross Computing in Science , 1992, Science.

[124]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[125]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .