Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease.

Magnetic resonance imaging (MRI) provides exquisite anatomic detail of various organs and is capable of providing additional functional information. This combination allows for comprehensive diagnostic evaluation of pathologies such as ischemic renal disease. Noninvasive MRI techniques could facilitate translation of many studies performed in controlled animal models using technologies that are invasive to humans. Such a translation is being recognized as essential because many proposed interventions and drugs that prove efficacious in animal models fail to do so in humans. In this article, we review the state-of-the-art functional MRI technique as applied to the kidneys.

[1]  V. Runge,et al.  Contrast Agents for Magnetic Resonance Imaging: Safety Update , 2003, Topics in magnetic resonance imaging : TMRI.

[2]  Dan Lloyd,et al.  Functional MRI and the Study of Human Consciousness , 2002, Journal of Cognitive Neuroscience.

[3]  G. Ronquist,et al.  Polyol-pathway-dependent disturbances in renal medullary metabolism in experimental insulin-deficient diabetes mellitus in rats , 2004, Diabetologia.

[4]  R. Dolan,et al.  First-pass renal perfusion imaging using MS-325, an albumin-targeted MRI contrast agent. , 1999, Investigative radiology.

[5]  P. Liss,et al.  Adenosine A1 receptors in contrast media-induced renal dysfunction in the normal rat , 2004, European Radiology.

[6]  B. Saltzman,et al.  Redistribution of renal blood flow after SWL evaluated by Gd-DTPA-enhanced magnetic resonance imaging. , 1998, Journal of endourology.

[7]  P. Huppert,et al.  Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application. , 1994, Kidney international.

[8]  M. Brezis,et al.  Determinants of intrarenal oxygenation. II. Hemodynamic effects. , 1994, The American journal of physiology.

[9]  M. Brezis,et al.  Myoglobinuric acute renal failure in the rat: a role for medullary hypoperfusion, hypoxia, and tubular obstruction. , 1996, Journal of the American Society of Nephrology : JASN.

[10]  Linda Ewing-Cobbs,et al.  Early Brain Injury in Children: Development and Reorganization of Cognitive Function , 2003, Developmental neuropsychology.

[11]  A. Georgopoulos,et al.  Functional mapping in the human brain using high magnetic fields. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  C Holden Panel Seeks Truth in Lie Detector Debate , 2001, Science.

[13]  P. Liss,et al.  The effects of carbon dioxide versus ioxaglate in the rat kidney. , 2005, Journal of vascular and interventional radiology : JVIR.

[14]  Atle Bjørnerud,et al.  The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system , 2004, NMR in biomedicine.

[15]  S. Ogawa,et al.  The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation , 1993, Magnetic resonance in medicine.

[16]  Wei Li,et al.  First‐pass contrast‐enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)‐based blood pool agent , 2005, Journal of magnetic resonance imaging : JMRI.

[17]  Sean B Fain,et al.  Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. , 2005, Radiology.

[18]  P. Liss,et al.  Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension , 2003, Diabetologia.

[19]  Hans Stødkilde-Jørgensen,et al.  Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction. , 2005, Kidney international.

[20]  A. Aisen,et al.  Feasibility of MR Diffusion Studies in the Kidney , 1995, Journal of magnetic resonance imaging : JMRI.

[21]  Jing-xia Xie,et al.  Functional evaluation of normothermic ischemia and reperfusion injury in dog kidney by combining MR diffusion‐weighted imaging and Gd‐DTPA enhanced first‐pass perfusion , 2003, Journal of magnetic resonance imaging : JMRI.

[22]  D. Volterrani,et al.  Captopril radionuclide test in renovascular hypertension: a European multicentre study , 1993, European Journal of Nuclear Medicine.

[23]  Markus Rudin,et al.  Effect of essential hypertension on kidney function as measured in rat by dynamic MRI , 2002, Magnetic resonance in medicine.

[24]  M. Rudin,et al.  Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI. , 2000, Magnetic resonance imaging.

[25]  H. Teh,et al.  MR renography using a dynamic gradient-echo sequence and low-dose gadopentetate dimeglumine as an alternative to radionuclide renography. , 2003, AJR. American journal of roentgenology.

[26]  Robert J Gillies,et al.  Renal and systemic pH imaging by contrast‐enhanced MRI , 2003, Magnetic resonance in medicine.

[27]  K. Hendrich,et al.  Perfusion quantitation in transplanted rat kidney by MRI with arterial spin labeling. , 1998, Kidney international.

[28]  John P Mugler,et al.  Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes--initial experience. , 2002, Radiology.

[29]  S. Ogawa Brain magnetic resonance imaging with contrast-dependent oxygenation , 1990 .

[30]  T. Redpath,et al.  Blood oxygen level dependent (BOLD) MRI: A novel technique for the detection of myocardial ischemia. , 2006, European journal of internal medicine.

[31]  Joan Stiles,et al.  Exploring Developmental Change in the Neural Bases of Higher Cognitive Functions: The Promise of Functional Magnetic Resonance Imaging , 2003, Developmental neuropsychology.

[32]  M Bock,et al.  Noninvasive analysis of renal artery blood flow dynamics with MR cine phase-contrast flow measurements. , 1997, The American journal of physiology.

[33]  A. Kirsch,et al.  Renal transit time with MR urography in children. , 2004, Radiology.

[34]  P. Storey,et al.  Evaluation of the reproducibility of intrarenal R  2* and ΔR  2* measurements following administration of furosemide and during waterload , 2004, Journal of magnetic resonance imaging : JMRI.

[35]  R. Roman,et al.  Influence of the renal medullary circulation on the control of sodium excretion. , 1993, The American journal of physiology.

[36]  T. Nakagawa,et al.  Subtle renal injury is likely a common mechanism for salt-sensitive essential hypertension. , 2005, Hypertension.

[37]  M Salerno,et al.  Hyperpolarized noble gas MR imaging of the lung: potential clinical applications. , 2001, European journal of radiology.

[38]  R R Edelman,et al.  Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. , 1994, Radiology.

[39]  E. Mackenzie,et al.  Cerebral Blood Flow and Metabolism , 1993 .

[40]  K. B. Larson,et al.  Simultaneous MR Acquisition of Arterial and Brain Signal‐Time Curves , 1992, Magnetic resonance in medicine.

[41]  Manzoor Ahmed,et al.  Imaging of acute stroke: state of the art. , 2004, Seminars in vascular surgery.

[42]  M. Brezis,et al.  Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. , 1994, The Journal of clinical investigation.

[43]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[44]  R R Edelman,et al.  Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. , 1996, Circulation.

[45]  R R Edelman,et al.  Captopril MR renography in a swine model: toward a comprehensive evaluation of renal arterial stenosis. , 2000, Radiology.

[46]  A. Cowley Control of the renal medullary circulation by vasopressin V1 and V2 receptors in the rat , 2000, Experimental physiology.

[47]  Martin R Prince,et al.  Blood pool MR angiography of aortic stent-graft endoleak. , 2004, AJR. American journal of roentgenology.

[48]  Michael V. Romalis,et al.  Theory of spin-exchange optical pumping of 3 He and 129 Xe , 1998 .

[49]  F. Epstein,et al.  Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy , 2001, Journal of magnetic resonance imaging : JMRI.

[50]  R. Roman,et al.  Effect of renal medullary circulation on arterial pressure. , 1992, Journal of hypertension. Supplement : official journal of the International Society of Hypertension.

[51]  G N Stewart,et al.  Researches on the Circulation Time in Organs and on the Influences which affect it , 1893, The Journal of physiology.

[52]  A. Bidani,et al.  Aminophylline ameliorates glycerol-induced acute renal failure in rats. , 1983, Canadian journal of physiology and pharmacology.

[53]  F. Lazeyras,et al.  Absolute renal blood flow quantification by dynamic MRI and Gd-DTPA , 2000, European Radiology.

[54]  F. Epstein,et al.  Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition. , 1999, Kidney international.

[55]  R. Roman,et al.  The renal medulla and hypertension. , 1995, Hypertension.

[56]  M. Brezis,et al.  Determinants of intrarenal oxygenation: factors in acute renal failure. , 1992, Renal failure.

[57]  N. Lassen,et al.  Cerebral Transit of an Intravascular Tracer May Allow Measurement of Regional Blood Volume but Not Regional Blood Flow , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[58]  K. Bichler,et al.  Protective effect of verapamil on shock wave induced renal tubular dysfunction. , 1993, The Journal of urology.

[59]  M. Brezis,et al.  Disparate effects of adenosine A1- and A2-receptor agonists on intrarenal blood flow. , 1993, The American journal of physiology.

[60]  P. Persson,et al.  Oxygen and renal hemodynamics in the conscious rat. , 2000, Journal of the American Society of Nephrology : JASN.

[61]  P. Liss,et al.  Hypoperfusion in the Renal outer Medulla after Injection of Contrast Media in Rats , 1999, Acta radiologica.

[62]  J. Dunn,et al.  Blood oxygenation. Heterogeneity of hypoxic tissues monitored using bold MR imaging. , 1997, Advances in experimental medicine and biology.

[63]  M. Mintun,et al.  Nonoxidative glucose consumption during focal physiologic neural activity. , 1988, Science.

[64]  C T Moonen,et al.  Diffusion tensor MRI of the human kidney , 2001, Journal of magnetic resonance imaging : JMRI.

[65]  G. Mckinnon,et al.  Ultra-high-speed MR imaging , 2004, European Radiology.

[66]  H. Jóhannesson,et al.  Parahydrogen‐induced polarization in imaging: Subsecond 13C angiography , 2001, Magnetic resonance in medicine.

[67]  B. Saltzman,et al.  Protective effect of aminophylline on renal perfusion changes induced by high-energy shockwaves identified by Gd-DTPA-enhanced first-pass perfusion MRI. , 2000, Journal of endourology.

[68]  A. Sawyer-Glover,et al.  Noninvasive measurement of extraction fraction and single-kidney glomerular filtration rate with MR imaging in swine with surgically created renal arterial stenoses. , 2002, Radiology.

[69]  M. Brezis,et al.  Physiology of Renal Hypoxia a , 1994, Annals of the New York Academy of Sciences.

[70]  M. Brezis,et al.  Hypoxia of the renal medulla--its implications for disease. , 1995, The New England journal of medicine.

[71]  Jacques Belenger,et al.  Noninvasive Measurement of Absolute Renal Perfusion by Contrast Medium-Enhanced Magnetic Resonance Imaging , 2003, Investigative radiology.

[72]  M Galanski,et al.  Use of Doppler ultrasonography to predict the outcome of therapy for renal-artery stenosis. , 2001, The New England journal of medicine.

[73]  R. C. Gur,et al.  Brain Activity during Simulated Deception: An Event-Related Functional Magnetic Resonance Study , 2002, NeuroImage.

[74]  Lars E Olsson,et al.  Hyperpolarized 13C MR angiography using trueFISP , 2003, Magnetic resonance in medicine.

[75]  P. Storey,et al.  Kidneys in hypertensive rats show reduced response to nitric oxide synthase inhibition as evaluated by BOLD MRI , 2003, Journal of magnetic resonance imaging : JMRI.

[76]  M. Brezis,et al.  Effects of nonsteroidal anti-inflammatory drugs upon intrarenal blood flow: selective medullary hypoperfusion. , 1993, Experimental nephrology.

[77]  David Gur,et al.  In vivo mapping of local cerebral blood flow by xenon-enhanced computed tomography. , 1982, Science.

[78]  Rika Takikawa,et al.  [In-vivo visualization of gene expression using magnetic resonance imaging]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[79]  W. Nitz,et al.  Fast and ultrafast non-echo-planar MR imaging techniques , 2002, European Radiology.

[80]  P. Choyke,et al.  Hydrated clearance of gadolinium-DTPA as a measurement of glomerular filtration rate. , 1992, Kidney international.

[81]  S. Textor,et al.  Noninvasive diagnosis of renovascular disease. , 1994, Mayo Clinic proceedings.

[82]  F Henry-Le Bros,et al.  Cerebral blood flow and metabolism, L Edvinsson, E Mackenzie, J McCulloch. Raven Press, Paris (1993) , 1994 .

[83]  J. Svensson,et al.  13 C-Angiography , 2002 .

[84]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[85]  H. Lee,et al.  New findings of the correlation between acupoints and corresponding brain cortices using functional MRI. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Richard J. Johnson,et al.  Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. , 2002, The New England journal of medicine.

[87]  Natarajan Raghunand,et al.  In vivo imaging of extracellular pH using 1H MRSI , 1999, Magnetic resonance in medicine.

[88]  C. Moonen,et al.  Renal diffusion and BOLD MRI in experimental diabetic nephropathy , 2003, Journal of magnetic resonance imaging : JMRI.

[89]  Stephen J Riederer,et al.  Blood oxygen level-dependent measurement of acute intra-renal ischemia. , 2004, Kidney international.

[90]  P. Matthews,et al.  Functional magnetic resonance imaging. , 2004, Journal of neurology, neurosurgery, and psychiatry.

[91]  Z. Cho,et al.  Acupuncture: the search for biologic evidence with functional magnetic resonance imaging and positron emission tomography techniques. , 2002, Journal of alternative and complementary medicine.

[92]  G. Bozdagi,et al.  Correlation of quantitative dynamic magnetic resonance imaging findings with pathology results in renal transplants: a preliminary report. , 1999, Transplantation proceedings.

[93]  R. Dolan,et al.  MS-325: albumin-targeted contrast agent for MR angiography. , 1998, Radiology.

[94]  J. Trueta,et al.  Studies of the Renal Circulation , 1947 .

[95]  Hendrik Kooijman,et al.  Glomerular filtration rate measured using the Patlak plot technique and contrast‐enhanced dynamic MRI with different amounts of gadolinium‐DTPA , 2005, Journal of magnetic resonance imaging : JMRI.

[96]  Donald S. Williams,et al.  Perfusion imaging , 1992, Magnetic resonance in medicine.

[97]  M. Brezis,et al.  Renal microcirculation and tissue damage during acute ureteral obstruction in the rat: effect of saline infusion, indomethacin and radiocontrast. , 1997, Kidney international.

[98]  Donald S. Williams,et al.  Measurement of brain perfusion by volume‐localized NMR spectroscopy using inversion of arterial water spins: Accounting for transit time and cross‐relaxation , 1992, Magnetic resonance in medicine.

[99]  Jan H. Ardenkjær-Larsen,et al.  Molecular imaging with endogenous substances , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[100]  F. Epstein,et al.  Evaluation of changes in intrarenal oxygenation in rats using multiple gradient‐recalled echo (mGRE) sequence , 1999, Journal of magnetic resonance imaging : JMRI.

[101]  R R Edelman,et al.  Breath‐hold R2* mapping with a multiple gradient‐recalled echo sequence: Application to the evaluation of intrarenal oxygenation , 1997, Journal of magnetic resonance imaging : JMRI.

[102]  J. Biederer,et al.  Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. , 2000, Magnetic resonance imaging.

[103]  M. Brezis,et al.  Determinants of intrarenal oxygenation. I. Effects of diuretics. , 1994, The American journal of physiology.

[104]  J R Griffiths,et al.  An assessment of 31P MRS as a method of measuring pH in rat tumours , 1992, NMR in biomedicine.

[105]  B. Siewert,et al.  STAR‐HASTE: Perfusion imaging without magnetic susceptibility artifact , 1997, Magnetic resonance in medicine.

[106]  S. Kety,et al.  THE NITROUS OXIDE METHOD FOR THE QUANTITATIVE DETERMINATION OF CEREBRAL BLOOD FLOW IN MAN: THEORY, PROCEDURE AND NORMAL VALUES. , 1948, The Journal of clinical investigation.

[107]  M. Bock,et al.  Quantification of renal perfusion abnormalities using an intravascular contrast agent (part 2): Results in animals and humans with renal artery stenosis , 2003, Magnetic resonance in medicine.

[108]  U. Klose,et al.  FAIR true‐FISP perfusion imaging of the kidneys , 2004, Magnetic resonance in medicine.

[109]  Michael V Knopp,et al.  Morphologic and functional magnetic resonance imaging of renal artery stenosis: a multireader tricenter study. , 2002, Journal of the American Society of Nephrology : JASN.

[110]  R. A. Norman,et al.  Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. , 1972, The American journal of medicine.

[111]  G M Bydder,et al.  Assessment of brain perfusion with MR imaging. , 1988, Journal of computer assisted tomography.

[112]  H C Charles,et al.  Human lung air spaces: potential for MR imaging with hyperpolarized He-3. , 1996, Radiology.

[113]  Michael Bock,et al.  Quantification of renal perfusion using an intravascular contrast agent (part 1): Results in a canine model , 2003, Magnetic resonance in medicine.

[114]  M. Brezis,et al.  Tissue Oxygenation Modifies Nitric Oxide Bioavailability , 1999, Microcirculation.

[115]  M. Brezis,et al.  Effects of adenosine on intrarenal oxygenation. , 1991, The American journal of physiology.

[116]  P. Liss,et al.  Altered response in renal blood flow and oxygen tension to contrast media in diabetic rats. , 2003, Acta radiologica.

[117]  A. Taylor Functional testing: ACEI renography. , 2000, Seminars in nephrology.

[118]  A. Padhani Dynamic contrast‐enhanced MRI in clinical oncology: Current status and future directions , 2002, Journal of magnetic resonance imaging : JMRI.

[119]  D. Volterrani,et al.  Captopril radionuclide test in renovascular hypertension: a European multicentre study. European Multicentre Study Group. , 1993, European journal of nuclear medicine.

[120]  Y. Lo,et al.  Increased cortical excitability in human deception , 2003, Neuroreport.

[121]  J. D'Elia,et al.  Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. , 1994, The New England journal of medicine.

[122]  K. Krishnan,et al.  Magnetic resonance imaging using deoxyhemoglobin contrast versus positron emission tomography in the assessment of brain function , 1995, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[123]  T. Grist,et al.  Rapid in vivo measurement of single-kidney extraction fraction and glomerular filtration rate with MR imaging. , 1998, Radiology.

[124]  A. Veves,et al.  Effect of diabetes on renal medullary oxygenation during water diuresis. , 2002, Diabetes care.

[125]  Dudley J Pennell,et al.  Cardiovascular magnetic resonance and the role of adenosine pharmacologic stress. , 2004, The American journal of cardiology.

[126]  A. Alavi,et al.  Induced renal artery stenosis in rabbits: magnetic resonance imaging, angiography, and radionuclide determination of blood volume and blood flow. , 1988, Magnetic Resonance Imaging.

[127]  B. Rosen,et al.  Pitfalls in MR measurement of tissue blood flow with intravascular tracers: Which mean transit time? , 1993, Magnetic resonance in medicine.

[128]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[129]  H. Degani,et al.  Functional sodium magnetic resonance imaging of the intact rat kidney. , 2004, Kidney international.

[130]  F. Korosec,et al.  Detection of acute renal ischemia in swine using blood oxygen level‐dependent magnetic resonance imaging , 2005, Journal of magnetic resonance imaging : JMRI.

[131]  M. Bock,et al.  Renal Disease: Value of Functional Magnetic Resonance Imaging With Flow and Perfusion Measurements , 2004, Investigative radiology.

[132]  M H Buonocore,et al.  Noninvasive measurement of renal hemodynamic functions using gadolinium enhanced magnetic resonance imaging. , 1994, Magnetic resonance in medicine.

[133]  Henry Rusinek,et al.  MR imaging of renal function. , 2003, Radiologic clinics of North America.

[134]  R. Roman,et al.  Direct studies on the control of the renal microcirculation. , 1991, Journal of the American Society of Nephrology : JASN.

[135]  M. Brezis,et al.  Dopamine increases renal medullary blood flow without improving regional hypoxia. , 1995, Experimental nephrology.

[136]  J. Svensson,et al.  Cerebral perfusion assessment by bolus tracking using hyperpolarized 13C , 2004, Magnetic resonance in medicine.

[137]  P. Liss,et al.  Differentiating between effects of streptozotocin per se and subsequent hyperglycemia on renal function and metabolism in the streptozotocin‐diabetic rat model , 2004, Diabetes/metabolism research and reviews.

[138]  K. Zierler Theoretical Basis of Indicator‐Dilution Methods For Measuring Flow and Volume , 1962 .

[139]  P. Storey,et al.  Effect of free radical scavenger (tempol) on intrarenal oxygenation in hypertensive rats as evaluated by BOLD MRI , 2005, Journal of magnetic resonance imaging : JMRI.

[140]  Donald S. Williams,et al.  Tissue specific perfusion imaging using arterial spin labeling , 1994, NMR in biomedicine.

[141]  R. Edelman,et al.  Noninvasive comprehensive characterization of renal artery stenosis by combination of STAR angiography and EPISTAR perfusion imaging , 1997, Magnetic resonance in medicine.

[142]  N Grenier,et al.  Diagnosis of renovascular hypertension: feasibility of captopril-sensitized dynamic MR imaging and comparison with captopril scintigraphy. , 1996, AJR. American journal of roentgenology.

[143]  H. Kooijman,et al.  Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction , 2000, Pediatric Radiology.

[144]  M. Brezis,et al.  Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys. , 1991, The Journal of clinical investigation.

[145]  L. Schad,et al.  Ureteral complications after kidney transplantation--evaluation with functional magnetic resonance urography. , 1997, Transplantation Proceedings.

[146]  B. Saltzman,et al.  Magnetic resonance imaging in the evaluation of ureteropelvic junction obstructed kidney. , 1997, Urology.

[147]  N. Lassen,et al.  Tracer kinetic methods in medical physiology , 1979 .

[148]  Grace Hu,et al.  Molecular MR imaging of melanoma angiogenesis with ανβ3‐targeted paramagnetic nanoparticles , 2005, Magnetic resonance in medicine.

[149]  P. V. van Zijl,et al.  Proton NMR spectroscopy of solvent‐saturable resonances: A new approach to study pH effects in Situ , 1998, Magnetic resonance in medicine.

[150]  W. Rau,et al.  Measurement of single‐kidney glomerular filtration rate using a contrast‐enhanced dynamic gradient‐echo sequence and the Rutland‐Patlak plot technique , 2003, Journal of magnetic resonance imaging : JMRI.