Comparison of the main siderophores produced by some species of Streptomyces

The production of siderophores by four Streptomyces strains, S. ambofaciens, S. coelicolor, S. lividans, and S. viridosporus, was studied under iron-limited conditions. S. viridosporus produced two different siderophores: the linear desferrioxamine B and the cyclic desferrioxamine E. The latter was produced by the other strains and was the main siderophore of S. ambofaciens. The linear desferrioxamine G was the major form of S. coelicolor and S. lividans. The uptake rates of 55Fe-labeled ferrioxamines by S. lividans and S. viridosporus showed that the G form was incorporated less efficiently than the B and E forms.

[1]  K. Hantke,et al.  Iron‐hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein‐dependent transport system , 1993, Molecular microbiology.

[2]  M. Abdallah,et al.  The Siderochromes of Non-fluorescent Pseudomonads: Production of Nocardamine by Pseudomonas stutzeri , 1980 .

[3]  G. Jung,et al.  Characterization of ferrioxamine E as the principal siderophore ofErwinia herbicola (Enterobacter agglomerans) , 2005, Biology of Metals.

[4]  M. Ramachandra,et al.  Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus , 1988, Applied and environmental microbiology.

[5]  M. Schafft,et al.  Cadaverin ist ein Zwischenprodukt der Biosynthese von Arthrobactin und Ferrioxamin E , 1978, Archives of Microbiology.

[6]  J. H. Crosa,et al.  Characterization of a high-affinity iron transport system in Acinetobacter baumannii , 1992, Journal of bacteriology.

[7]  H. Naganawa,et al.  Bisucaberin, a new siderophore, sensitizing tumor cells to macrophage-mediated cytolysis. II. Physico-chemical properties and structure determination. , 1987, The Journal of antibiotics.

[8]  W. Rabsch,et al.  Isolation and identification of ferrioxamine G and E inHafnia alvei , 1990, Biology of Metals.

[9]  Günther Jung,et al.  Production of desferrioxamine E and new analogues by directed fermentation and feeding fermentation , 1990, Applied Microbiology and Biotechnology.

[10]  P. Leblond,et al.  Genetic instability and hypervariability in Streptomyces ambofaciens: towards an understanding of a mechanism of genome plasticity , 1990, Molecular microbiology.

[11]  K. Raymond,et al.  Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus , 1984, Journal of bacteriology.

[12]  H. Zähner,et al.  Stoffwechselprodukte von Mikroorganismen , 2004, Archiv für Mikrobiologie.

[13]  W. Rabsch,et al.  The specificity of bacterial siderophore receptors probed by bioassays , 2005, Biology of Metals.

[14]  J. Kinsella,et al.  Review of the Streptomyces lividans/vector pIJ702 system for gene cloning. , 1992, Critical reviews in microbiology.

[15]  H. Bickel,et al.  Stoffwechselprodukte von Actinomyceten. 26. Mitteilung. Über die Isolierung und Charakterisierung der Ferrioxamine A—F, neuer Wuchsstoffe der Sideramin‐Gruppe , 1960 .

[16]  H. Zähner,et al.  Stoffwechselprodukte von Mikroorganismen , 2004, Archives of Microbiology.

[17]  R. Blondeau,et al.  Biodegradation of soil humic acids by Streptomyces viridosporus. , 1992, Canadian journal of microbiology.

[18]  J. Neilands,et al.  Universal chemical assay for the detection and determination of siderophores. , 1987, Analytical biochemistry.

[19]  C. Carrano,et al.  Identification of the ferrioxamine B receptor, FoxB, inEscherichia coli K12 , 2005, Biometals.

[20]  A. Stoll,et al.  Nocardamin, ein neues Antibioticum aus einer Nocardia-Art , 1951 .

[21]  J. Neilands,et al.  Ferric iron uptake in Erwinia chrysanthemi mediated by chrysobactin and related catechol-type compounds , 1992, Journal of Bacteriology.

[22]  G. Winkelmann,et al.  Ferrioxamine transport mutants and the identification of the ferrioxamine receptor protein (FoxA) inErwinia herbicola (Enterobacter agglomerans) , 2005, Biology of Metals.