Towards a “canonical” agranular cortical microcircuit

Based on regularities in the intrinsic microcircuitry of cortical areas, variants of a “canonical” cortical microcircuit have been proposed and widely adopted, particularly in computational neuroscience and neuroinformatics. However, this circuit is founded on striate cortex, which manifests perhaps the most extreme instance of cortical organization, in terms of a very high density of cells in highly differentiated cortical layers. Most other cortical regions have a less well differentiated architecture, stretching in gradients from the very dense eulaminate primary cortical areas to the other extreme of dysgranular and agranular areas of low density and poor laminar differentiation. It is unlikely for the patterns of inter- and intra-laminar connections to be uniform in spite of strong variations of their structural substrate. This assumption is corroborated by reports of divergence in intrinsic circuitry across the cortex. Consequently, it remains an important goal to define local microcircuits for a variety of cortical types, in particular, agranular cortical regions. As a counterpoint to the striate microcircuit, which may be anchored in an exceptional cytoarchitecture, we here outline a tentative microcircuit for agranular cortex. The circuit is based on a synthesis of the available literature on the local microcircuitry in agranular cortical areas of the rodent brain, investigated by anatomical and electrophysiological approaches. A central observation of these investigations is a weakening of interlaminar inhibition as cortical cytoarchitecture becomes less distinctive. Thus, our study of agranular microcircuitry revealed deviations from the well-known “canonical” microcircuit established for striate cortex, suggesting variations in the intrinsic circuitry across the cortex that may be functionally relevant.

[1]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[2]  T. Wiesel,et al.  Functional organization of the visual cortex. , 1983, Progress in brain research.

[3]  Olivier Camiré,et al.  Functional compartmentalisation and regulation of postsynaptic Ca2+ transients in inhibitory interneurons. , 2012, Cell calcium.

[4]  Edward M. Callaway,et al.  Excitatory Local Connections of Superficial Neurons in Rat Auditory Cortex , 2008, The Journal of Neuroscience.

[5]  C. Hilgetag,et al.  A predictive model of the cat cortical connectome based on cytoarchitecture and distance , 2014, Brain Structure and Function.

[6]  Gustavo Pedraza-Alva,et al.  Shaping synaptic plasticity: The role of activity-mediated epigenetic regulation on gene transcription , 2013, International Journal of Developmental Neuroscience.

[7]  C. M. Smith Does history repeat itself? Cortical columns: 4. Déja vu? , 2010, Cortex.

[8]  C C Hilgetag,et al.  Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. , 2001, Cerebral cortex.

[9]  F. Karube,et al.  Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. , 2011, Cerebral cortex.

[10]  Edward M. Callaway,et al.  Laminar Specificity of Functional Input to Distinct Types of Inhibitory Cortical Neurons , 2009, The Journal of Neuroscience.

[11]  Wolfgang Maass,et al.  Cerebral Cortex Advance Access published February 15, 2006 A Statistical Analysis of Information- Processing Properties of Lamina-Specific , 2022 .

[12]  F. Karube,et al.  Specialized Cortical Subnetworks Differentially Connect Frontal Cortex to Parahippocampal Areas , 2012, The Journal of Neuroscience.

[13]  Peter Sonderegger,et al.  The dual role of the extracellular matrix in synaptic plasticity and homeostasis , 2010, Nature Reviews Neuroscience.

[14]  Rodney J. Douglas,et al.  Inhibition in cortical circuits , 2009, Current Biology.

[15]  Y. Kawaguchi,et al.  Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. , 1993, Journal of neurophysiology.

[16]  W. Allan Jamieson,et al.  Recollections of My Life , 1900, Canadian Medical Association journal.

[17]  A. S. EVE Does History Repeat Itself? , 1933, Nature.

[18]  Katrin Amunts,et al.  Architecture of the Cerebral Cortex , 2012 .

[19]  Y. Goda,et al.  The interplay between Hebbian and homeostatic synaptic plasticity , 2013, The Journal of cell biology.

[20]  G. Palm,et al.  Density of neurons and synapses in the cerebral cortex of the mouse , 1989, The Journal of comparative neurology.

[21]  Javier DeFelipe,et al.  Double bouquet cell in the human cerebral cortex and a comparison with other mammals , 2005, The Journal of comparative neurology.

[22]  P. Rakic Confusing cortical columns , 2008, Proceedings of the National Academy of Sciences.

[23]  C. Petersen The Functional Organization of the Barrel Cortex , 2007, Neuron.

[24]  Kathleen S. Rockland,et al.  Five Points on Columns , 2010, Front. Neuroanat..

[25]  Y. Kawaguchi,et al.  Cortical Inhibitory Cell Types Differentially Form Intralaminar and Interlaminar Subnetworks withExcitatory Neurons , 2009, The Journal of Neuroscience.

[26]  R. Yuste,et al.  Stereotyped position of local synaptic targets in neocortex. , 2001, Science.

[27]  Tomoki Fukai,et al.  Layer-Dependent Attentional Processing by Top-down Signals in a Visual Cortical Microcircuit Model , 2011, Front. Comput. Neurosci..

[28]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[29]  Ben A. Barres,et al.  Regulation of synaptic connectivity by glia , 2010, Nature.

[30]  Andrea Klug,et al.  The Hippocampus Book , 2016 .

[31]  Y. Kang Differential paired pulse depression of non-NMDA and NMDA currents in pyramidal cells of the rat frontal cortex , 1995, Journal of Neuroscience.

[32]  Jakob Heinzle,et al.  A Microcircuit Model of the Frontal Eye Fields , 2007, The Journal of Neuroscience.

[33]  G. Dallérac,et al.  How do astrocytes shape synaptic transmission? Insights from electrophysiology , 2013, Front. Cell. Neurosci..

[34]  H. Barbas,et al.  Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure , 2006, The European journal of neuroscience.

[35]  Yasuo Kawaguchi,et al.  Firing-Pattern-Dependent Specificity of Cortical Excitatory Feed-Forward Subnetworks , 2008, The Journal of Neuroscience.

[36]  G. Elston,et al.  Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey , 1999, The Journal of comparative neurology.

[37]  Barbara L. Finlay,et al.  Systematic, balancing gradients in neuron density and number across the primate isocortex , 2012, Front. Neuroanat..

[38]  F. Helmchen,et al.  Barrel cortex function , 2013, Progress in Neurobiology.

[39]  H. Barbas Pattern in the laminar origin of corticocortical connections , 1986, The Journal of comparative neurology.

[40]  H. Barbas,et al.  Area 4 has layer IV in adult primates , 2014, The European journal of neuroscience.

[41]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[42]  Johannes J. Letzkus,et al.  Cortical feed-forward networks for binding different streams of sensory information , 2006, Nature Neuroscience.

[43]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[44]  J. Lübke,et al.  Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex , 2007, Brain Structure and Function.

[45]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[46]  G. Woodman,et al.  Microcircuitry of Agranular Frontal Cortex: Testing the Generality of the Canonical Cortical Microcircuit , 2014, The Journal of Neuroscience.

[47]  Thomas L. Dean,et al.  The atoms of neural computation , 2014, Science.

[48]  Dileep George,et al.  Towards a Mathematical Theory of Cortical Micro-circuits , 2009, PLoS Comput. Biol..

[49]  Christopher U. M. Smith,et al.  Does history repeat itself? Cortical columns 1. Introduction , 2010, Cortex.

[50]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  Youngnam Kang,et al.  Differential Columnar Processing in Local Circuits of Barrel and Insular Cortices , 2008, The Journal of Neuroscience.

[52]  W. Maass,et al.  State-dependent computations: spatiotemporal processing in cortical networks , 2009, Nature Reviews Neuroscience.

[53]  Lazaros C. Triarhou,et al.  Cellular Structure of the Human Cerebral Cortex , 2009 .

[54]  G. Buzsáki,et al.  Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. , 2004, Journal of neurophysiology.

[55]  S. Shipp The importance of being agranular: a comparative account of visual and motor cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  H. S. Meyer,et al.  Cellular organization of cortical barrel columns is whisker-specific , 2013, Proceedings of the National Academy of Sciences.

[57]  Patrick O. Kanold,et al.  Spatial pattern of intra-laminar connectivity in supragranular mouse auditory cortex , 2014, Front. Neural Circuits.

[58]  R. Douglas,et al.  Recurrent neuronal circuits in the neocortex , 2007, Current Biology.

[59]  D. B. Leitch,et al.  Neuron densities vary across and within cortical areas in primates , 2010, Proceedings of the National Academy of Sciences.

[60]  Kevan A. C. Martin,et al.  Whose Cortical Column Would that Be? , 2010, Front. Neuroanat..

[61]  J. Szentágothai The Ferrier Lecture, 1977 The neuron network of the cerebral cortex: a functional interpretation , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[62]  Wolfgang Maass,et al.  Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates , 2009, Journal of Physiology-Paris.

[63]  B. Zemelman,et al.  The columnar and laminar organization of inhibitory connections to neocortical excitatory cells , 2010, Nature Neuroscience.

[64]  Viktor Vegh,et al.  The Laminar Cortex Model: A New Continuum Cortex Model Incorporating Laminar Architecture , 2012, PLoS Comput. Biol..

[65]  Kevan A. C. Martin,et al.  The butterfly and the loom , 2007, Brain Research Reviews.

[66]  Stefan Habenschuss,et al.  Stochastic Computations in Cortical Microcircuit Models , 2013, PLoS Comput. Biol..

[67]  P. Caroni,et al.  Structural plasticity upon learning: regulation and functions , 2012, Nature Reviews Neuroscience.

[68]  Charles Watson,et al.  Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones , 2013, Front. Neuroanat..

[69]  Does history repeat itself? Cortical columns 3. A cortex of columns , 2010, Cortex.

[70]  D. McCandless Fundamental neuroscience , 1997, Metabolic Brain Disease.

[71]  Christopher U. M. Smith Does history repeat itself? Cortical columns 2. From cytoarchitectonics to columns , 2010, Cortex.

[72]  M. Witter,et al.  Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat , 2003, Hippocampus.

[73]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[74]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[75]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[76]  Claus C. Hilgetag,et al.  Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex , 2010, NeuroImage.

[77]  German Barrionuevo,et al.  Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex , 2001, The Journal of comparative neurology.

[78]  Jyh-Jang Sun,et al.  Laminar and Columnar Structure of Sensory-Evoked Multineuronal Spike Sequences in Adult Rat Barrel Cortex In Vivo. , 2015, Cerebral cortex.

[79]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[80]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[81]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[82]  M. Colonnier,et al.  Number of neurons in individual laminae of areas 3B, 4 gamma, and 6a alpha of the cat cerebral cortex: a comparison with major visual areas. , 1989, The Journal of comparative neurology.

[83]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[84]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[85]  V. Chevaleyre,et al.  Modulating excitation through plasticity at inhibitory synapses , 2014, Front. Cell. Neurosci..

[86]  Ian R. Wickersham,et al.  Laminarly Orthogonal Excitation of Fast-Spiking and Low-Threshold-Spiking Interneurons in Mouse Motor Cortex , 2012, The Journal of Neuroscience.

[87]  A. P. Bannister,et al.  Inter- and intra-laminar connections of pyramidal cells in the neocortex , 2005, Neuroscience Research.

[88]  A. Triller,et al.  From the stochasticity of molecular processes to the variability of synaptic transmission , 2011, Nature Reviews Neuroscience.

[89]  Hysell V. Oviedo,et al.  The functional asymmetry of auditory cortex is reflected in the organization of local cortical circuits , 2010, Nature Neuroscience.

[90]  Tobias C. Potjans,et al.  The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model , 2012, Cerebral cortex.

[91]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[92]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[93]  Yun Wang,et al.  Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. , 2002, Cerebral cortex.

[94]  Y. Kawaguchi,et al.  Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex , 2002, Journal of neurocytology.

[95]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[96]  C. Stevens,et al.  Structural uniformity of neocortex, revisited , 2013, Proceedings of the National Academy of Sciences.

[97]  Yasuo Kawaguchi,et al.  Cell Diversity and Connection Specificity between Callosal Projection Neurons in the Frontal Cortex , 2011, The Journal of Neuroscience.

[98]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[99]  A. Arnsten,et al.  Neuromodulation of Thought: Flexibilities and Vulnerabilities in Prefrontal Cortical Network Synapses , 2012, Neuron.