Regulation of Low-Spin Fe of Mn-Iron Hexacyanoferrate for Boosted Potassium Ion Storage Performance

[1]  M. Pasta,et al.  Uncovering the Interplay of Competing Distortions in the Prussian Blue Analogue K2Cu[Fe(CN)6] , 2022, Chemistry of materials : a publication of the American Chemical Society.

[2]  X. Sun,et al.  Prussian Blue and Its Analogues as Cathode Materials for Na-, K-, Mg-, Ca-, Zn- and Al-ion batteries , 2022, Nano Energy.

[3]  Yuliang Cao,et al.  Effect of Eliminating Water in Prussian Blue Cathode for Sodium‐Ion Batteries , 2022, Advanced Functional Materials.

[4]  Kai Jiang,et al.  Interstitial Water Improves Structural Stability of Iron Hexacyanoferrate for High-Performance Sodium-Ion Batteries. , 2022, ACS applied materials & interfaces.

[5]  Feiyu Kang,et al.  Coexistence of two coordinated states contributing to high-voltage and long-life Prussian blue cathode for potassium ion battery , 2021, Chemical Engineering Journal.

[6]  Li Lu,et al.  Elevating the discharge plateau of prussian blue analogs through low-spin Fe redox induced intercalation pseudocapacitance , 2021, Energy Storage Materials.

[7]  Feiyu Kang,et al.  Polyvinylpyrrolidone-Bridged Prussian Blue/rGO Composite as a High-Performance Cathode for K-Ion Batteries. , 2021, ACS applied materials & interfaces.

[8]  Lulu Zhang,et al.  Effect of Zn-substitution induced structural regulation on sodium storage performance of Fe-based Prussian blue , 2021, Chemical Engineering Journal.

[9]  G. Ceder,et al.  Computational and experimental search for potential polyanionic K-ion cathode materials , 2021, Journal of Materials Chemistry A.

[10]  Lulu Zhang,et al.  Ternary Ni‐based Prussian blue analogue with superior sodium storage performance induced by synergistic effect of Co and Fe , 2021, Carbon Energy.

[11]  Jaekook Kim,et al.  A new material discovery platform of stable layered oxide cathodes for K-ion batteries , 2021, Energy & Environmental Science.

[12]  L. Wan,et al.  Layered oxides with solid-solution reaction for high voltage potassium-ion batteries cathode , 2021 .

[13]  Jiangwei Wang,et al.  Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries , 2021, Nature Communications.

[14]  Yong Lu,et al.  A Low-Strain Potassium-Rich Prussian Blue Analogue Cathode for High Power Potassium-Ion Batteries. , 2021, Angewandte Chemie.

[15]  Yu Ding,et al.  Defect-free-induced Na+ disordering in electrode materials , 2021 .

[16]  Han Yang,et al.  KCoxMn1-x[Fe(CN)6]/Carbon nanotube composite as high capacity anode for Li-ion batteries , 2021 .

[17]  M. Fang,et al.  Potassium-ion batteries: outlook on present and future technologies , 2021, Energy & Environmental Science.

[18]  T. He,et al.  Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution , 2021 .

[19]  P. Barpanda,et al.  Electrochemical insertion of potassium ions in Na4Fe3(PO4)2P2O7 mixed phosphate , 2020 .

[20]  Qian Zhang,et al.  Oriented Formation of a Prussian Blue Nanoflower as a High Performance Cathode for Sodium Ion Batteries , 2020 .

[21]  Lin Xu,et al.  K+ modulated K+/vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries , 2020 .

[22]  Sheng-wu Guo,et al.  Potassium Nickel Iron Hexacyanoferrate as Ultra-Long Life Cathode Material for Potassium Ion Batteries with High Energy Density. , 2020, ACS nano.

[23]  Leigang Xue,et al.  Hexacyanoferrate‐Type Prussian Blue Analogs: Principles and Advances Toward High‐Performance Sodium and Potassium Ion Batteries , 2020, Advanced Energy Materials.

[24]  Yuefeng Liu,et al.  High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery , 2020 .

[25]  S. Dou,et al.  Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries , 2020, Nature Communications.

[26]  Haoshen Zhou,et al.  Ni-Doped Layered Manganese Oxide as A Stable Cathode for Potassium Ion Batteries. , 2020, ACS applied materials & interfaces.

[27]  Kangli Wang,et al.  High‐Performance Manganese Hexacyanoferrate with Cubic Structure as Superior Cathode Material for Sodium‐Ion Batteries , 2020, Advanced Functional Materials.

[28]  Yong‐Sheng Hu,et al.  Water-in-Salt electrolyte Promotes High Capacity FeFe(CN)6 Cathode for Aqueous Al-ion Battery. , 2019, ACS applied materials & interfaces.

[29]  Jiaqi Huang,et al.  Ion-exchange synthesis of high-energy-density prussian blue analogues for sodium ion battery cathodes with fast kinetics and long durability , 2019, Journal of Power Sources.

[30]  Bin Huang,et al.  Prussian Blue [K2FeFe(CN)6] Doped with Nickel as a Superior Cathode: An Efficient Strategy To Enhance Potassium Storage Performance , 2019, ACS Sustainable Chemistry & Engineering.

[31]  Bin Huang,et al.  Improving Potassium-Ion Batteries by Optimizing the Composition of Prussian Blue Cathode , 2019, ACS Applied Energy Materials.

[32]  Jang‐Yeon Hwang,et al.  A 4-Volt-Class Potassium Metal Battery with Extremely Low Overpotential. , 2019, ACS nano.

[33]  Pengjian Zuo,et al.  Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture , 2019, Nano Energy.

[34]  Daliang Fang,et al.  Activating C‐Coordinated Iron of Iron Hexacyanoferrate for Zn Hybrid‐Ion Batteries with 10 000‐Cycle Lifespan and Superior Rate Capability , 2019, Advanced materials.

[35]  L. Mai,et al.  Realizing Superior Prussian Blue Positive Electrode for Potassium Storage via Ultrathin Nanosheet Assembly , 2019, ACS Sustainable Chemistry & Engineering.

[36]  Chenglong Zhao,et al.  Building aqueous K-ion batteries for energy storage , 2019, Nature Energy.

[37]  Jing Xu,et al.  Birnessite Nanosheet Arrays with High K Content as a High‐Capacity and Ultrastable Cathode for K‐Ion Batteries , 2019, Advanced materials.

[38]  C. Shi,et al.  Capacitance controlled, hierarchical porous 3D ultra-thin carbon networks reinforced prussian blue for high performance Na-ion battery cathode , 2019, Nano Energy.

[39]  Yang-Kook Sun,et al.  Recent Progress in Rechargeable Potassium Batteries , 2018, Advanced Functional Materials.

[40]  Yunhui Huang,et al.  A Dual‐Insertion Type Sodium‐Ion Full Cell Based on High‐Quality Ternary‐Metal Prussian Blue Analogs , 2018 .

[41]  Kan Wang,et al.  Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping , 2017 .

[42]  Linda F. Nazar,et al.  Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries , 2017 .

[43]  Z. Fu,et al.  Long life and high-rate Berlin green FeFe(CN)6 cathode material for a non-aqueous potassium-ion battery , 2017 .

[44]  Zelang Jian,et al.  Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries , 2017 .

[45]  K. Kubota,et al.  A novel K-ion battery: hexacyanoferrate(II)/graphite cell , 2017 .

[46]  Yang Xu,et al.  Potassium Prussian Blue Nanoparticles: A Low‐Cost Cathode Material for Potassium‐Ion Batteries , 2017 .