暂无分享,去创建一个
Fabrice Zaoui | Olivier Thual | Rem-Sophia Mouradi | Pablo Tassi | C'edric Goeury | F. Zaoui | C. Goeury | O. Thual | P. Tassi | Rem-Sophia Mouradi
[1] Eric Blayo,et al. A reduced-order strategy for 4D-Var data assimilation , 2005, 0709.2825.
[2] Sophie Durbiano,et al. Vecteurs caractéristiques de modèles océaniques pour la réduction d'ordre en assimilation de données , 2001 .
[3] J. Hervouet. Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method , 2007 .
[4] Rogelio Luck,et al. Solution to inverse heat conduction problems employing singular value decomposition and model-reduction , 2002 .
[5] Jean-Frédéric Gerbeau,et al. Derivation of viscous Saint-Venant system for laminar shallow water , 2001 .
[6] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[7] Cédric Jamet,et al. Data Assimilation Methods , 2013 .
[8] Sarah L. Dance,et al. Data assimilation for state and parameter estimation: application to morphodynamic modelling , 2013 .
[9] P. Thompson,et al. Interactions Between Mean Sea Level, Tide, Surge, Waves and Flooding: Mechanisms and Contributions to Sea Level Variations at the Coast , 2019, Surveys in Geophysics.
[10] Bruno Després,et al. Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method , 2013, Uncertainty Quantification in Computational Fluid Dynamics.
[11] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[12] M. U. Altaf,et al. Inverse Shallow-Water Flow Modeling Using Model Reduction , 2009 .
[13] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[14] Yoshua Bengio,et al. Tackling Climate Change with Machine Learning , 2019, ACM Comput. Surv..
[15] Hans Wackernagel,et al. Error covariance modeling in sequential data assimilation , 2001 .
[16] Jean-Philippe Argaud,et al. Background error covariance iterative updating with invariant observation measures for data assimilation , 2019, Stochastic Environmental Research and Risk Assessment.
[17] J. Monnier,et al. River discharge and bathymetry estimation from SWOT altimetry measurements , 2020 .
[18] Tania Ruth Scott,et al. Data assimilation for a coastal area morphodynamic model: Morecambe Bay , 2007 .
[19] Donald W. Knight,et al. The concept of roughness in fluvial hydraulics and its formulation in 1D, 2D and 3D numerical simulation models , 2008 .
[20] B. Iooss,et al. Error covariance tuning in variational data assimilation: application to an operating hydrological model , 2020, Stochastic Environmental Research and Risk Assessment.
[21] Selahattin Kocaman,et al. A multi-parameter calibration method for the numerical simulation of morphodynamic problems , 2017 .
[22] Arnold W. Heemink,et al. Model-Reduced Variational Data Assimilation , 2006 .
[23] G. Egbert,et al. Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .
[24] V. A. Krasil’nikov,et al. Atmospheric turbulence and radio-wave propagation , 1962 .
[25] Maëlle Nodet,et al. Introduction to Data Assimilation , 2011, Numerical Weather Prediction and Data Assimilation.
[26] Marc Bocquet,et al. Joint Estimation of Model and Observation Error Covariance Matrices in Data Assimilation: a Review , 2018, 1807.11221.
[27] Jorge Nocedal,et al. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.
[28] Peter R. Oke,et al. Status and future of data assimilation in operational oceanography , 2015 .
[29] D. Lucor,et al. Adaptive Bayesian Inference for Discontinuous Inverse Problems, Application to Hyperbolic Conservation Laws , 2014 .
[30] Fabrice Zaoui,et al. Physically interpretable machine learning algorithm on multidimensional non-linear fields , 2020, J. Comput. Phys..
[31] I. Tezaur,et al. Uncertainty Quantification , 2011, Encyclopedia of Parallel Computing.
[32] R. Bannister. A review of operational methods of variational and ensemble‐variational data assimilation , 2017 .
[33] G. Evensen,et al. Data assimilation in the geosciences: An overview of methods, issues, and perspectives , 2017, WIREs Climate Change.
[34] H. Najm,et al. A stochastic projection method for fluid flow II.: random process , 2002 .
[35] Marc Bocquet,et al. Data Assimilation: Methods, Algorithms, and Applications , 2016 .
[36] H. Park,et al. The Karhunen-Loève Galerkin method for the inverse natural convection problems , 2001 .
[37] Tommaso Taddei,et al. A registration method for model order reduction: data compression and geometry reduction , 2019, SIAM J. Sci. Comput..
[38] Ibrahim Hoteit,et al. A reduced adjoint approach to variational data assimilation , 2013 .
[39] G. Blatman,et al. Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis , 2009 .
[40] L. Sirovich. Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .
[41] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..
[42] Dongbin Xiu,et al. On numerical properties of the ensemble Kalman filter for data assimilation , 2008 .
[43] Pierre Sagaut,et al. Data assimilation-based reconstruction of urban pollutant release characteristics , 2017 .
[44] Vassilios Theofilis,et al. Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.
[45] Ionel M. Navon. Data Assimilation for Numerical Weather Prediction: A Review , 2009 .
[46] Didier Lucor,et al. Interactive comment on “Towards predictive data-driven simulations of wildfire spread – Part I: Reduced-cost Ensemble Kalman Filter based on a Polynomial Chaos surrogate model for parameter estimation” , 2014 .
[47] G. Evensen. Data Assimilation: The Ensemble Kalman Filter , 2006 .
[48] Stefano Marelli,et al. Data-driven polynomial chaos expansion for machine learning regression , 2018, J. Comput. Phys..
[49] Xiangjun Tian,et al. An ensemble-based explicit four-dimensional variational assimilation method , 2008 .
[50] Arnold W. Heemink,et al. Towards a data assimilation system for morphodynamic modeling: bathymetric data assimilation for wave property estimation , 2013, Ocean Dynamics.
[51] Ionel M. Navon,et al. A reduced‐order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition , 2007 .
[52] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[53] Bertrand Chapron,et al. Global Observations of Fine-Scale Ocean Surface Topography With the Surface Water and Ocean Topography (SWOT) Mission , 2010, Front. Mar. Sci..
[54] H. Madsen,et al. Data assimilation in hydrodynamic modelling: on the treatment of non-linearity and bias , 2004 .
[55] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[56] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[57] Anuj Karpatne,et al. Machine Learning for the Geosciences: Challenges and Opportunities , 2017, IEEE Transactions on Knowledge and Data Engineering.
[58] Yanhua Cao,et al. Parameter Estimation for a 2D Tidal Model with POD 4D VAR Data Assimilation , 2016 .
[59] Dongbin Xiu,et al. A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..
[60] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[61] R. Ghanem,et al. A stochastic projection method for fluid flow. I: basic formulation , 2001 .