Surrogate-based variational data assimilation for tidal modelling

Rem-Sophia Mouradi, Cédric Goeury, Olivier Thual, Fabrice Zaoui, and Pablo Tassi EDF R&D, National Laboratory for Hydraulics and Environment (LNHE), 6 Quai Watier, 78400 Chatou, France Climate, Environment, Coupling and Uncertainties research unit (CECI) at the European Center for Research and Advanced Training in Scientific Computation (CERFACS), French National Research Center (CNRS), 42 Avenue Gaspard Coriolis, 31820 Toulouse, France Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, Toulouse, France Saint-Venant Laboratory for Hydraulics (LHSV), Chatou, France

[1]  Eric Blayo,et al.  A reduced-order strategy for 4D-Var data assimilation , 2005, 0709.2825.

[2]  Sophie Durbiano,et al.  Vecteurs caractéristiques de modèles océaniques pour la réduction d'ordre en assimilation de données , 2001 .

[3]  J. Hervouet Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method , 2007 .

[4]  Rogelio Luck,et al.  Solution to inverse heat conduction problems employing singular value decomposition and model-reduction , 2002 .

[5]  Jean-Frédéric Gerbeau,et al.  Derivation of viscous Saint-Venant system for laminar shallow water , 2001 .

[6]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[7]  Cédric Jamet,et al.  Data Assimilation Methods , 2013 .

[8]  Sarah L. Dance,et al.  Data assimilation for state and parameter estimation: application to morphodynamic modelling , 2013 .

[9]  P. Thompson,et al.  Interactions Between Mean Sea Level, Tide, Surge, Waves and Flooding: Mechanisms and Contributions to Sea Level Variations at the Coast , 2019, Surveys in Geophysics.

[10]  Bruno Després,et al.  Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method , 2013, Uncertainty Quantification in Computational Fluid Dynamics.

[11]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[12]  M. U. Altaf,et al.  Inverse Shallow-Water Flow Modeling Using Model Reduction , 2009 .

[13]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[14]  Yoshua Bengio,et al.  Tackling Climate Change with Machine Learning , 2019, ACM Comput. Surv..

[15]  Hans Wackernagel,et al.  Error covariance modeling in sequential data assimilation , 2001 .

[16]  Jean-Philippe Argaud,et al.  Background error covariance iterative updating with invariant observation measures for data assimilation , 2019, Stochastic Environmental Research and Risk Assessment.

[17]  J. Monnier,et al.  River discharge and bathymetry estimation from SWOT altimetry measurements , 2020 .

[18]  Tania Ruth Scott,et al.  Data assimilation for a coastal area morphodynamic model: Morecambe Bay , 2007 .

[19]  Donald W. Knight,et al.  The concept of roughness in fluvial hydraulics and its formulation in 1D, 2D and 3D numerical simulation models , 2008 .

[20]  B. Iooss,et al.  Error covariance tuning in variational data assimilation: application to an operating hydrological model , 2020, Stochastic Environmental Research and Risk Assessment.

[21]  Selahattin Kocaman,et al.  A multi-parameter calibration method for the numerical simulation of morphodynamic problems , 2017 .

[22]  Arnold W. Heemink,et al.  Model-Reduced Variational Data Assimilation , 2006 .

[23]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[24]  V. A. Krasil’nikov,et al.  Atmospheric turbulence and radio-wave propagation , 1962 .

[25]  Maëlle Nodet,et al.  Introduction to Data Assimilation , 2011, Numerical Weather Prediction and Data Assimilation.

[26]  Marc Bocquet,et al.  Joint Estimation of Model and Observation Error Covariance Matrices in Data Assimilation: a Review , 2018, 1807.11221.

[27]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[28]  Peter R. Oke,et al.  Status and future of data assimilation in operational oceanography , 2015 .

[29]  D. Lucor,et al.  Adaptive Bayesian Inference for Discontinuous Inverse Problems, Application to Hyperbolic Conservation Laws , 2014 .

[30]  Fabrice Zaoui,et al.  Physically interpretable machine learning algorithm on multidimensional non-linear fields , 2020, J. Comput. Phys..

[31]  I. Tezaur,et al.  Uncertainty Quantification , 2011, Encyclopedia of Parallel Computing.

[32]  R. Bannister A review of operational methods of variational and ensemble‐variational data assimilation , 2017 .

[33]  G. Evensen,et al.  Data assimilation in the geosciences: An overview of methods, issues, and perspectives , 2017, WIREs Climate Change.

[34]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[35]  Marc Bocquet,et al.  Data Assimilation: Methods, Algorithms, and Applications , 2016 .

[36]  H. Park,et al.  The Karhunen-Loève Galerkin method for the inverse natural convection problems , 2001 .

[37]  Tommaso Taddei,et al.  A registration method for model order reduction: data compression and geometry reduction , 2019, SIAM J. Sci. Comput..

[38]  Ibrahim Hoteit,et al.  A reduced adjoint approach to variational data assimilation , 2013 .

[39]  G. Blatman,et al.  Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis , 2009 .

[40]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[41]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[42]  Dongbin Xiu,et al.  On numerical properties of the ensemble Kalman filter for data assimilation , 2008 .

[43]  Pierre Sagaut,et al.  Data assimilation-based reconstruction of urban pollutant release characteristics , 2017 .

[44]  Vassilios Theofilis,et al.  Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.

[45]  Ionel M. Navon Data Assimilation for Numerical Weather Prediction: A Review , 2009 .

[46]  Didier Lucor,et al.  Interactive comment on “Towards predictive data-driven simulations of wildfire spread – Part I: Reduced-cost Ensemble Kalman Filter based on a Polynomial Chaos surrogate model for parameter estimation” , 2014 .

[47]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[48]  Stefano Marelli,et al.  Data-driven polynomial chaos expansion for machine learning regression , 2018, J. Comput. Phys..

[49]  Xiangjun Tian,et al.  An ensemble-based explicit four-dimensional variational assimilation method , 2008 .

[50]  Arnold W. Heemink,et al.  Towards a data assimilation system for morphodynamic modeling: bathymetric data assimilation for wave property estimation , 2013, Ocean Dynamics.

[51]  Ionel M. Navon,et al.  A reduced‐order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition , 2007 .

[52]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[53]  Bertrand Chapron,et al.  Global Observations of Fine-Scale Ocean Surface Topography With the Surface Water and Ocean Topography (SWOT) Mission , 2010, Front. Mar. Sci..

[54]  H. Madsen,et al.  Data assimilation in hydrodynamic modelling: on the treatment of non-linearity and bias , 2004 .

[55]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[56]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[57]  Anuj Karpatne,et al.  Machine Learning for the Geosciences: Challenges and Opportunities , 2017, IEEE Transactions on Knowledge and Data Engineering.

[58]  Yanhua Cao,et al.  Parameter Estimation for a 2D Tidal Model with POD 4D VAR Data Assimilation , 2016 .

[59]  Dongbin Xiu,et al.  A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..

[60]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[61]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .