From Self-Similarity to Local Self-Similarity: the Estimation Problem
暂无分享,去创建一个
[1] Paulo Gonçalves,et al. Multiple-window wavelet transform and local scaling exponent estimation , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[2] D. Applebaum. Stable non-Gaussian random processes , 1995, The Mathematical Gazette.
[3] R. Dahlhaus. On the Kullback-Leibler information divergence of locally stationary processes , 1996 .
[4] L. Schwartz. Théorie des distributions , 1966 .
[5] R. Peltier,et al. Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .
[6] R. Dobrushin. Gaussian and their Subordinated Self-similar Random Generalized Fields , 1979 .
[7] S. Jaffard,et al. Elliptic gaussian random processes , 1997 .
[8] S. L. Richter,et al. Guided waves in bounded media with random gross inhomogeneities , 1967 .
[9] Gabriel Lang,et al. Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .
[10] P. Welch. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .
[11] S. Mallat,et al. Adaptive covariance estimation of locally stationary processes , 1998 .
[12] J. Bardet. Tests d'autosimilarite des processus gaussiens. Dimension fractale et dimension de correlation , 1997 .
[13] Adrian Papamarcou,et al. On estimating the spectral exponent of fractional Brownian motion , 1995, IEEE Trans. Inf. Theory.
[14] A. Kolmogorov. Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[15] Jacques Istas,et al. Identifying the multifractional function of a Gaussian process , 1998 .