Role of S∕Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies

Chalcogenide glasses have attracted considerable attention and found various applications due to their infrared transparency and other optical properties. The As–S–Se chalcogenide glass, with its large glass-formation domain and favorable nonlinear property, is a promising candidate system for tailoring important optical properties through modification of glass composition. In this context, a systematic study on ternary As–S–Se glass, chalcogen-rich versus well-studied stochiometric compositions, has been carried out using three different techniques: Raman spectroscopy, x-ray photoelectron spectroscopy, and extended x-ray absorption fine structure spectroscopy. These complementary techniques lead to a consistent understanding of the role of S∕Se ratio in chalcogen-rich As–S–Se glasses, as compared to stochiometric composition, and to provide insight into the structural units (such as the mixed pyramidal units) and evidence for the existence of homopolar bonds (such as Se–Se, S–S, and Se–S), which are the ...

[1]  Oleg M. Efimov,et al.  Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses , 2001 .

[2]  Tigran Galstian,et al.  Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy , 2001 .

[3]  P. Lippens,et al.  A structural study of glasses in the As2S3Sb2S3Tl2S system , 1995 .

[4]  A. Ward,et al.  Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures , 1968 .

[5]  David Alan Drabold,et al.  Electronic structure of glassy chalcogenides As4Se4 and As2Se3: a joint theoretical and experimental study. , 2002, Physical review letters.

[6]  Mihai Popescu,et al.  Non-crystalline chalcogenides , 2000 .

[7]  Yang,et al.  Measurement of local structural configurations associated with reversible photostructural changes in arsenic trisulfide films. , 1987, Physical review. B, Condensed matter.

[8]  Daniel G. Georgiev,et al.  Rigidity transitions and molecular structure of As x Se 1¿x glasses , 2000 .

[9]  K. Hirao,et al.  Crystallization effect on non-linear optical response of silicate glass and glass-ceramics containing gold nanoparticles , 2001 .

[10]  A. Ward,et al.  Lattice Vibrations and Interlayer Interactions in CrystallineAs2S3andAs2Se3 , 1971 .

[11]  Sophie LaRochelle,et al.  First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses , 1999 .

[12]  S. Seal,et al.  Effect of Oxygen at Elevated Temperatures on Chemical, Structural, and Morphological Properties of Arsenic Trisulfide Glasses , 2003 .

[13]  R. Street,et al.  Thermally induced effects in evaporated chalcogenide films. I. Structure , 1978 .

[14]  P. Klein,et al.  Photostructural effects in glassy As2Se3 and As2S3 , 1980 .

[15]  E. Domashevskaya,et al.  XPS and XES emission investigations of d–p resonance in some copper chalcogenides , 2001 .

[16]  Liudi Jiang,et al.  X-ray photoelectron spectroscopy studies of thin GexSb40−xS60 chalcogenide films , 2002 .

[17]  D. Schiferl,et al.  The crystal structure of arsenic at 4.2, 78 and 299°K , 1969 .

[18]  T. Kitahara,et al.  Change of Composition Ratio in Amorphous Arsenic Selenide Films Caused by Heat-Annealing and Photo-Irradiation , 1979 .

[19]  P. Nagels Plasma-enhanced chemical vapor deposition and structural characterization of amorphous chalcogenide films , 1998 .

[20]  S. W. Ing,et al.  Photodecomposition of Amorphous As2Se3 and As2S3 , 1971 .

[21]  Yang,et al.  Determination of bond strengths of arsenic and arsenic chalcogen compounds using the temperature dependence of extended x-ray-absorption fine structure. , 1987, Physical review. B, Condensed matter.

[22]  A. Ward Molecular structure of dilute vitreous selenium-sulfur and selenium-tellurium alloys , 1970 .

[23]  J. Jumas,et al.  AsK-edge EXAFS study of the ternary system Sb2S3–As2S3–Tl2S , 1997 .

[24]  David Alan Drabold,et al.  Photoinduced changes in the electronic structure of As4Se3 glass , 2003 .

[25]  David Alan Drabold,et al.  Atomistic comparison between stoichiometric and nonstoichiometric glasses: The cases of As2Se3 and As4Se4 , 2001 .

[26]  U. Strom,et al.  Raman scattering of the mixed chalcogenide glass system As2SxSe3-x , 1983 .

[27]  A. Kolobov,et al.  Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation , 1997 .

[28]  Ishwar D. Aggarwal,et al.  Applications of chalcogenide glass optical fibers , 2002 .

[29]  Richard M. Martin,et al.  A molecular model for the vibrational modes in chalcogenide glasses , 1972 .

[30]  R. Zallen,et al.  Raman spectra of As4S4 polymorphs: Structural implications for amorphous As2S3 films , 1979 .

[31]  S. Onari,et al.  Raman Scattering in Amorphous As-Se System , 1980 .

[32]  D. W. Scott,et al.  Vibrational assignment and force constants of S8 from a normal-coordinate treatment , 1961 .

[33]  M. Cardona,et al.  X-Ray and Far-uv Photoemission from Amorphous and Crystalline Films of Se and Te , 1973 .

[34]  A. V. Kolobov,et al.  Photo-induced atomic processes in vitreous chalcogenides , 1993 .

[35]  Masaki Asobe,et al.  Nonlinear refractive index measurement in chalcogenide‐glass fibers by self‐phase modulation , 1992 .

[36]  R. M. Lambert,et al.  Novel photoinduced surface oxidation of an amorphous semiconductor: An XPS study of vitreous arsenic sulphide , 1989 .

[37]  A. Gheorghiu,et al.  Electronic structure of chalcogenide compounds from the system Tl2S-Sb2S3 studied by XPS and XES☆ , 1995 .

[38]  G. Pfaff,et al.  Ordering states in noncrystalline compounds , 1985 .

[39]  T. Wágner,et al.  Application of As40S60−xSex layers for high-efficiency grating production , 2000 .

[40]  G. Lucovsky,et al.  The effects of valency on transport properties in vitreous binary alloys of selenium , 1970 .

[41]  H. Bishop Practical peak area measurements in X‐ray photoelectron spectroscopy , 1981 .

[42]  P. Boolchand,et al.  Nanoscale phase separation effects near and 2.67, and rigidity transitions in chalcogenide glasses , 2002 .

[43]  P. Lippens,et al.  Sb LIII-edge XAS study of the ternary system Sb2S3As2S3Tl2S , 1996 .

[44]  T. Wágner,et al.  Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100−x glasses , 1998 .

[45]  A. Ankudinov,et al.  RELATIVISTIC CALCULATIONS OF SPIN-DEPENDENT X-RAY-ABSORPTION SPECTRA , 1997 .

[46]  William H. Dumbaugh,et al.  Nonlinear optical susceptibilities of high‐index glasses , 1989 .

[47]  V. Mikla Photoinduced structural changes and related phenomena in amorphous arsenic chalcogenides , 1996 .

[48]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .

[49]  P. Rentzeperis,et al.  The crystal structure of arsenic selenide, As2Se3 , 1985 .

[50]  D. Bazin,et al.  Structural study of various (As-Ge-Se-Te) amorphous chalcogenide glasses using X-ray absorption spectroscopy , 1987 .

[51]  Rudolf Frerichs,et al.  New Optical Glasses with Good Transparency in the Infrared , 1953 .

[52]  J. Végh The analytical form of the Shirley-type background , 1988 .

[53]  D. Joy,et al.  EXAFS Spectroscopy: Techniques and Applications , 1981 .

[54]  K. Matsuishi,et al.  One- and two-phonon Raman spectra of amorphous AsSe systems , 1985 .

[55]  David Alan Drabold,et al.  Study of structural changes in amorphous As2Se3 by EXAFS under in situ laser irradiation , 2001 .

[56]  Z. Černošek,et al.  Raman spectra and photostructural changes in the short-range order of amorphous As–S chalcogenides , 1999 .

[57]  Katsuhiko Hattori,et al.  Raman study of liquid sulfur , 1983 .

[58]  W. Morgan,et al.  Binding energy shifts in the x-ray photoelectron spectra of a series of related Group IVa compounds , 1973 .

[59]  Use of synchrotron techniques for a structural study of germanium chalcogenide glasses , 1995 .

[60]  A. Kolobov,et al.  An EXAFS study of reversible photostructural changes in As2Se3 glass , 1997 .

[61]  P. Grosse,et al.  The Physics of Selenium and Tellurium , 1979 .

[62]  Tomas Wagner,et al.  Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films , 2003 .

[63]  Yang,et al.  Chemical order in the glassy AsxS1-x system: An x-ray-absorption spectroscopy study. , 1989, Physical review. B, Condensed matter.

[64]  M. Sik,et al.  A note on the Raman spectra and structure of Asx S100−x (x ⩾ 40) glasses , 1980 .

[65]  A. Hilton Optical properties of chalcogenide glasses , 1970 .

[66]  G. Lucovsky Optic Modes in Amorphous As 2 S 3 and As 2 Se 3 , 1972 .

[67]  A. Schulte Near-Infrared Raman Spectroscopy Using CCD Detection and a Semiconductor Bandgap Filter for Rayleigh Line Rejection , 1992 .

[68]  A. Kolobov,et al.  Photostructural changes in amorphous selenium: an in situ EXAFS study at low temperature , 1996 .

[69]  D. Sayers,et al.  Kinetic X-ray absorption studies and computer structural modelling of photo-darkening in amorphous arsenic sulfide , 1990 .

[70]  S. Krishnaswami,et al.  In situ high-resolution X-ray photoelectron spectroscopy of light-induced changes in As Se glasses , 2000 .

[71]  Kathleen Richardson,et al.  Non-linear optical properties of chalcogenide glasses in the system As–S–Se , 1999 .

[72]  Jasbinder S. Sanghera,et al.  Highly nonlinear chalcogenide glasses for all-optical switching , 2003, Other Conferences.

[73]  H. Jain,et al.  Structure of As–Se and As–P–Se glasses studied by Raman spectroscopy , 2003 .

[74]  A. Kolobov,et al.  Role of lone-pair electrons in reversible photostructural changes in amorphous chalcogenides , 1998 .

[75]  W. Nowacki,et al.  Refinement of the crystal structures of realgar, AsS and orpiment, As2S3 , 1972 .

[76]  V. Mastelaro,et al.  Comparative EXAFS study of (Ag2X)y(As2X3)1−y glasses (X = Se or S) , 1995 .