Single-molecule detection of proteins using aptamer-functionalized molecular electronic devices.

[1]  Xuema Li,et al.  Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires , 2004 .

[2]  Elizabeth M. Boon,et al.  An electrical probe of protein–DNA interactions on DNA-modified surfaces , 2002, Nature Biotechnology.

[3]  Xiaohong Fang,et al.  Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. , 2010, Accounts of chemical research.

[4]  M. Steigerwald,et al.  Molecular electronic devices based on single-walled carbon nanotube electrodes. , 2008, Accounts of chemical research.

[5]  Alexandre Restrepo,et al.  Aptasensor development: elucidation of critical parameters for optimal aptamer performance. , 2004, Analytical chemistry.

[6]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[7]  Chunli Bai,et al.  Signaling aptamer/protein binding by a molecular light switch complex. , 2004, Analytical chemistry.

[8]  James Hone,et al.  Conductivity of a single DNA duplex bridging a carbon nanotube gap. , 2008, Nature nanotechnology.

[9]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[10]  J. Barton,et al.  Mechanisms for DNA charge transport. , 2010, Chemical reviews.

[11]  C. Sander,et al.  Genomic medicine and the future of health care. , 2000, Science.

[12]  T. Majima,et al.  Single-molecule observation of DNA charge transfer , 2007, Proceedings of the National Academy of Sciences.

[13]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[14]  Gengfeng Zheng,et al.  Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species , 2006, Nature Protocols.

[15]  Colin Nuckolls,et al.  Single-molecule devices as scaffolding for multicomponent nanostructure assembly. , 2007, Nano letters.

[16]  R. Stanley Williams,et al.  Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation , 2005 .

[17]  M. Newton,et al.  Interfacial bridge-mediated electron transfer: mechanistic analysis based on electrochemical kinetics and theoretical modelling. , 2007, Physical chemistry chemical physics : PCCP.

[18]  James Hone,et al.  Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules , 2006, Science.

[19]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[21]  M. Tewes,et al.  Microfabricated high-performance microwave impedance biosensors for detection of aptamer-protein interactions , 2005 .

[22]  Hee Cheul Choi,et al.  Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. , 2006, Journal of the American Chemical Society.

[23]  A. Heeger,et al.  Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. , 2005, Angewandte Chemie.

[24]  E. Scheer,et al.  Direct measurement of electrical transport through G-quadruplex DNA with mechanically controllable break junction electrodes. , 2010, Angewandte Chemie.

[25]  A. Tulinsky,et al.  The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. , 1994, The Journal of biological chemistry.

[26]  A M Ward,et al.  Prostate specific antigen: biology, biochemistry and available commercial assays , 2001, Annals of clinical biochemistry.

[27]  Gengfeng Zheng,et al.  Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays , 2006, Science.

[28]  G. Weiss,et al.  Conductance-Controlled Point Functionalization of Single-Walled Carbon Nanotubes , 2007, Science.

[29]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[30]  Juewen Liu,et al.  Functional nucleic acid sensors. , 2009, Chemical reviews.

[31]  T. G. Drummond,et al.  Electrochemical DNA sensors , 2003, Nature Biotechnology.

[32]  Muhammad A. Alam,et al.  Screening-limited response of nanobiosensors. , 2007, Nano letters.

[33]  A. Marx,et al.  Direkte Messung des Stromflusses durch G-Quadruplex-DNA mithilfe von mechanisch kontrollierbaren Bruchkontaktelektroden† , 2010 .

[34]  U. Schlecht,et al.  Comparison of antibody and aptamer receptors for the specific detection of thrombin with a nanometer gap-sized impedance biosensor. , 2006, Analytica chimica acta.

[35]  Gerd Ritter,et al.  Real-Time, label-free monitoring of tumor antigen and serum antibody interactions. , 2004, Journal of biochemical and biophysical methods.

[36]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[37]  Gregory A Weiss,et al.  Monitoring single-molecule reactivity on a carbon nanotube. , 2008, Nano letters.

[38]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  E. Scheer,et al.  Electrical characterization of DNA in mechanically controlled break-junctions , 2008 .

[40]  P. Sheehan,et al.  Detection limits for nanoscale biosensors. , 2005, Nano letters.