Wavelet Phase Synchronization of Fractional-Order Chaotic Systems

Nowadays, fractional-order systems are attracting more and more attention. There are several ways available for analyzing fractional-order systems, among which wavelet transform is an efficient method for analyzing system dynamics in both time and frequency domains. We investigate the wavelet phase synchronization employing wavelet transform to explore the phase synchronization behaviors of fractional-order chaotic oscillators. We analyze in detail the synchronization behaviors with changes to the coupling strength, the central frequency Ω0, and the time scale of the wavelet.

[1]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[2]  Liao Xiao-feng,et al.  Impulsive Control for Fractional-Order Chaotic Systems , 2008 .

[3]  Guo Rong-Wei Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems , 2011 .

[4]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[5]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[6]  Sha Wang,et al.  Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions , 2012 .

[7]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[8]  Guanrong Chen,et al.  HYPERCHAOS IN THE FRACTIONAL-ORDER NONAUTONOMOUS CHEN'S SYSTEM AND ITS SYNCHRONIZATION , 2005 .

[9]  Alexey A. Koronovskii,et al.  Wavelet transform analysis of the chaotic synchronization of dynamical systems , 2004 .

[10]  Jun-Guo Lu,et al.  Chaotic dynamics and synchronization of fractional-order Arneodo’s systems , 2005 .

[11]  Ahmed S. Elwakil,et al.  Fractional-order Wien-bridge oscillator , 2001 .

[12]  Juebang Yu,et al.  Synchronization of two coupled fractional-order chaotic oscillators , 2005 .

[13]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[14]  A. Hramov,et al.  Time scale synchronization of chaotic oscillators , 2005, nlin/0602053.

[15]  Tae-Hee Lee,et al.  Adaptive Functional Projective Lag Synchronization of a Hyperchaotic Rössler System , 2009 .

[16]  Jun-Guo Lu,et al.  Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal , 2006 .

[17]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[18]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[19]  Zhan Meng,et al.  Dynamic Behavior of Phase Synchronization of Chaos , 2000 .

[20]  P. Arena,et al.  Chaotic behavior in noninteger-order cellular neural networks , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  R. Koeller Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics , 1986 .

[22]  Chen Yong,et al.  Chaos in the Fractional Order Generalized Lorenz Canonical Form , 2009 .

[23]  J. Kurths,et al.  Phase Synchronization of Chaotic Oscillators by External Driving , 1997 .

[24]  Chunguang Li,et al.  Projective synchronization in fractional order chaotic systems and its control , 2006, nlin/0604055.

[25]  I. Podlubny Fractional differential equations , 1998 .

[26]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[27]  Ahmad Harb,et al.  On nonlinear control design for autonomous chaotic systems of integer and fractional orders , 2003 .

[28]  P. Arena,et al.  Bifurcation and Chaos in Noninteger Order Cellular Neural Networks , 1998 .

[29]  Eugene B. Postnikov On precision of wavelet phase synchronization of chaotic systems , 2007 .

[30]  E. Postnikov Wavelet phase synchronization and chaoticity. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Mohd. Salmi Md. Noorani,et al.  Adaptive Increasing-Order Synchronization and Anti-Synchronization of Chaotic Systems with Uncertain Parameters , 2011 .

[32]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[33]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[34]  Zhou Ping,et al.  One Specific State Variable for a Class of Fractional-Order Chaotic Systems and Its Applications , 2009 .

[35]  Chunguang Li,et al.  PHASE AND LAG SYNCHRONIZATION IN COUPLED FRACTIONAL ORDER CHAOTIC OSCILLATORS , 2007 .

[36]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[37]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .

[38]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[39]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[40]  J. Kurths,et al.  From Phase to Lag Synchronization in Coupled Chaotic Oscillators , 1997 .

[41]  Juebang Yu,et al.  Synchronization of fractional-order chaotic systems , 2005, Proceedings. 2005 International Conference on Communications, Circuits and Systems, 2005..

[42]  Weihua Deng,et al.  Synchronization of Chaotic Fractional Chen System , 2005 .

[43]  Fang Jian-an,et al.  Increasing-order Projective Synchronization of Chaotic Systems with Time Delay , 2009 .

[44]  Liu Zeng-rong,et al.  An Approach to Analyse Phase Synchronization in Oscillator Networks with Weak Coupling , 2007 .

[45]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[46]  Sun Weiguo,et al.  Differential Cross Sections for High-Lying Vibrational Excitations (ν=0→ν'=1,2,...,9,10 ) of e-H 2 Scattering , 2009 .

[47]  Bambi Hu,et al.  Phase Synchronization in Coupled Oscillators: Dynamical Manifestations , 2001 .

[48]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.