Stability limits of n-nonane calculated from molecular dynamics interface simulations.

Based on molecular dynamics simulation of the vapor-liquid interface, the classical thermodynamic spinodal for n-nonane is estimated using an earlier developed method. The choice of n-nonane as investigated molecule originates from the question whether a deviation from the spherical symmetry of a molecule affects the prediction of the stability limit data. As a result, we find that the estimated stability limit data for n-nonane are consistent within the experimental data available for the homologous series of the n-alkanes. It turns out that the slight alignment of the molecules parallel to the interface reported in the literature does not affect the method of transferring interface properties to the bulk phase stability limit.

[1]  Katalin Martinás,et al.  Thermodynamics of Negative Pressures in Liquids , 1998 .

[2]  R. Reid,et al.  Superheat-limit temperatures of polar liquids , 1981 .

[3]  Robert E. Apfel,et al.  The superheated drop detector , 1979 .

[4]  B. Smit,et al.  Phase diagrams of Lennard‐Jones fluids , 1992 .

[5]  Tasneem Abbasi,et al.  Accidental risk of superheated liquids and a framework for predicting the superheat limit , 2007 .

[6]  A. R. Imre,et al.  Estimation of the explosive boiling limit of metastable liquids , 2010 .

[7]  K. Binder,et al.  On the theory of spinodal decomposition in solid and liquid binary mixtures , 1978 .

[8]  G. Bakker Kapillarität und Oberflächenspannung , 1928 .

[9]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[10]  T. Kraska,et al.  Investigation of The Nucleation and Growth of Methanol Clusters from Supersaturated Vapor by Molecular Dynamics Simulations , 2012 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[13]  E. A. Müller,et al.  Comparison of united-atom potentials for the simulation of vapor-liquid equilibria and interfacial properties of long-chain n-alkanes up to n-C100. , 2011, The journal of physical chemistry. B.

[14]  Gabriele Sadowski,et al.  Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules , 2001 .

[15]  Hans Hasse,et al.  The influence of the liquid slab thickness on the planar vapor–liquid interfacial tension , 2013, 1301.2546.

[16]  Frank P. Lees,et al.  Loss Prevention In The Process Industries , 1980 .

[17]  Jonathan G. Harris Liquid-vapor interfaces of alkane oligomers: structure and thermodynamics from molecular dynamics simulations of chemically realistic models , 1992 .

[18]  J. Katz,et al.  The homogeneous nucleation of nonane , 1988 .

[19]  H. Maris,et al.  Liquids Under Negative Pressure , 2002 .

[20]  R. Rozas,et al.  New model for the correlation of the surface tension based on friction theory. , 2009, The journal of physical chemistry. B.

[21]  J. Weeks Structure and thermodynamics of the liquid–vapor interface , 1977 .

[22]  Roland Span,et al.  Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids , 2003 .

[23]  A. R. Imre,et al.  The relation of interface properties and bulk phase stability: molecular dynamics simulations of carbon dioxide. , 2009, The journal of physical chemistry. B.

[24]  A. R. Imre,et al.  Estimation of spinodals from the density profile of the vapor-liquid interface , 2009 .

[25]  C. Avedisian The Homogeneous Nucleation Limits of Liquids , 1985 .

[26]  H. Kwak,et al.  Gas-vapor bubble nucleation--a unified approach. , 2004, Journal of colloid and interface science.

[27]  K. Binder,et al.  Computer Simulation of Profiles of Interfaces Between Coexisting Phases , 2000 .

[28]  D. Corti,et al.  Critical cavities and the kinetic spinodal for superheated liquids. , 2004, The Journal of chemical physics.

[29]  Kurt Binder,et al.  Theory of first-order phase transitions , 1987 .

[30]  A. C. Fernandez-Pello,et al.  Experimental Observations on the Disruptive Combustion of Free Droplets of Multicomponent Fuels , 1980 .

[31]  J. Eberhart,et al.  Application of the mechanical stability condition to the prediction of the limit of superheat for normal alkanes, ether, and water , 1973 .

[32]  A. R. Imre,et al.  Liquid-vapour spinodal of pure helium 4 , 2008 .

[33]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[34]  Tasneem Abbasi,et al.  The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. , 2007, Journal of hazardous materials.

[35]  A. Fernandez-Pello,et al.  SOOTING BEHAVIOR DYNAMICS OF A NON-BUOYANT LAMINAR DIFFUSION FLAME , 2007 .

[36]  A. R. Imre,et al.  Estimation of the liquid-vapor spinodal from interfacial properties obtained from molecular dynamics and lattice Boltzmann simulations. , 2008, The Journal of chemical physics.

[37]  L. Mercury,et al.  Explosivity Conditions of Aqueous Solutions , 2009 .

[38]  B. Widom,et al.  Surface Tension and Molecular Correlations near the Critical Point , 1965 .

[39]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[40]  A. Harasima Molecular Theory of Surface Tension , 2007 .

[41]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[42]  Pablo G. Debenedetti,et al.  Metastable Liquids: Concepts and Principles , 1996 .

[43]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .