Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system

[1]  Ernst Worrell,et al.  Technology transfer of energy efficient technologies in industry: a review of trends and policy issues , 2001 .

[2]  Ernst Worrell,et al.  Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector , 2001 .

[3]  László Szabó,et al.  Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model , 2005 .

[4]  Edward Vine,et al.  An international survey of the energy service company (ESCO) industry , 2005 .

[5]  Semih Nemlioglu,et al.  Disposal of solid waste in Istanbul and along the Black Sea coast of Turkey. , 2005, Waste management.

[6]  Can Wang,et al.  Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry , 2007 .

[7]  Patrik Thollander,et al.  Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs , 2007 .

[8]  C. Wang,et al.  Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020 , 2008 .

[9]  L. Bernstein,et al.  Industrial energy efficiency and climate change mitigation , 2009, Renewable Energy.

[10]  Aie Energy Policies of IEA Countries: Luxembourg 2008 , 2009 .

[11]  K. Kratena,et al.  CO2 Emissions Embodied in Austrian International Trade , 2010 .

[12]  Mikael Ottosson,et al.  Energy management practices in Swedish energy-intensive industries , 2010 .

[13]  Jin-Won Park,et al.  Assessment of CO2 emissions and its reduction potential in the Korean petroleum refining industry using energy-environment models , 2010 .

[14]  Vanja M. Šušteršič,et al.  Review of existing energy management standards and possibilities for its introduction in Serbia , 2010 .

[15]  Pekka Ahtila,et al.  Variables affecting energy efficiency and CO2 emissions in the steel industry , 2010 .

[16]  O. Salor,et al.  Electrical Power Quality of Iron and Steel Industry in Turkey , 2007, IEEE Transactions on Industry Applications.

[17]  Saad Mekhilef,et al.  A review on energy saving strategies in industrial sector , 2011 .

[18]  Haslenda Hashim,et al.  Projection of CO2 emissions in Malaysia , 2011 .

[19]  L. Hunt,et al.  Industrial electricity demand for Turkey: A structural time series analysis , 2011 .

[20]  Y. Bor,et al.  The long-term forecast of Taiwan’s energy supply and demand: LEAP model application , 2011 .

[21]  Elif Akbostancı,et al.  CO2 emissions of Turkish manufacturing industry: A decomposition analysis , 2011 .

[22]  Deger Saygin,et al.  Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries , 2011 .

[23]  Russell Smyth,et al.  Inter-fuel substitution in the Chinese iron and steel sector , 2012 .

[24]  Numan M. Durakbasa,et al.  Evaluation of corporate energy management practices of energy intensive industries in Turkey , 2012 .

[25]  Michael A. McNeil,et al.  Energy efficiency – How far can we raise the bar? Revealing the potential of best available technologies , 2013 .

[26]  Erdem Görgün,et al.  The scenario analysis on CO2 emission mitigation potential in the Turkish electricity sector: 2006–2030 , 2013 .

[27]  Neven Duić,et al.  Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia , 2014 .

[28]  Boqiang Lin,et al.  Measuring energy efficiency under heterogeneous technologies using a latent class stochastic frontier approach: An application to Chinese energy economy , 2014 .

[29]  Tayfun Dede,et al.  Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm , 2014 .

[30]  Jaruwan Chontanawat,et al.  Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand , 2014 .