Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography.

Gold nanoring dimers were fabricated via EBL with dimensions of 127.6 ± 2.5 and 57.8 ± 2.3 nm for the outer and inner diameters, respectively, with interparticle separations ranging from 17.8 ± 3.4 to 239.2 ± 3.7 nm. The coupling between the inner and outer surfaces of a single nanoring renders it very sensitive to any anisotropy. We found that anisotropy in the particle geometry and anisotropy introduced by the substrate combine to create very unique spectral features in this system.

[1]  Shihe Yang,et al.  Controlled dispersion of silver nanoparticles into the bulk of thermosensitive polymer microspheres: tunable plasmonic coupling by temperature detected by surface enhanced Raman scattering. , 2011, Macromolecular rapid communications.

[2]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[3]  Mostafa A. El-Sayed,et al.  Surface Plasmon Fields and Coupling in the Hollow Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy. Theory and Experiment† , 2010 .

[4]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[5]  Prashant K. Jain,et al.  Plasmonic coupling in noble metal nanostructures , 2010 .

[6]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[7]  Harry A. Atwater,et al.  Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles , 2005 .

[8]  Prashant K. Jain,et al.  Surface Plasmon Coupling and Its Universal Size Scaling in Metal Nanostructures of Complex Geometry: Elongated Particle Pairs and Nanosphere Trimers , 2008 .

[9]  S. Maier,et al.  Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. , 2011, Nano letters.

[10]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[11]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[12]  Harry A. Atwater,et al.  Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy , 2002 .

[13]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[14]  Erik C. Dreaden,et al.  Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. , 2008, Cancer letters.

[15]  Hiroyuki Honda,et al.  Medical application of functionalized magnetic nanoparticles. , 2005, Journal of bioscience and bioengineering.

[16]  Graeme L. Stephens,et al.  Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the Block–Toeplitz structure , 1990 .

[17]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[18]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .

[19]  Peter Nordlander,et al.  Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles , 2007 .

[20]  Naomi J Halas,et al.  Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. , 2003, Annual review of biomedical engineering.

[21]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[22]  Erik C. Dreaden,et al.  Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. , 2009, Bioconjugate chemistry.

[23]  M. El-Sayed,et al.  Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. , 2005, The journal of physical chemistry. B.

[24]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[25]  Anne L. van de Ven,et al.  Efficient mucosal delivery of optical contrast agents using imidazole-modified chitosan. , 2010, Journal of biomedical optics.

[26]  Stephen K. Gray,et al.  Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders , 2003 .

[27]  Younan Xia,et al.  Metal Nanostructures with Hollow Interiors , 2003 .

[28]  H. Fredriksson,et al.  Enhanced nanoplasmonic optical sensors with reduced substrate effect. , 2008, Nano letters.

[29]  M. El-Sayed,et al.  On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. , 2009, The journal of physical chemistry. A.

[30]  M. El-Sayed,et al.  Some interesting properties of metals confined in time and nanometer space of different shapes. , 2001, Accounts of chemical research.

[31]  Naomi J. Halas,et al.  Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells , 2005 .

[32]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[33]  George C. Schatz,et al.  Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields , 2005 .

[34]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[35]  Peter Nordlander,et al.  Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. , 2011, Nano letters.

[36]  Xiaohua Huang,et al.  Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. , 2005, Nano letters.

[37]  Mostafa A. El-Sayed,et al.  Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods† , 2003 .

[38]  W. P. Hall,et al.  A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Assay for Alzheimer's Disease , 2004 .

[39]  Chia-Yang Tsai,et al.  Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. , 2012, Nano letters.

[40]  P. Jain,et al.  Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. , 2007, Nanomedicine.

[41]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[42]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[43]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[44]  N. Kotov,et al.  Multifunctional magnetoplasmonic nanoparticle assemblies for cancer therapy and diagnostics (theranostics). , 2010, Macromolecular rapid communications.

[45]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[46]  J. West,et al.  Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. , 2007, Nano letters.

[47]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[48]  Philippe Robert,et al.  Recent advances in iron oxide nanocrystal technology for medical imaging. , 2006, Advanced drug delivery reviews.

[49]  J. Shieh,et al.  Using spectroscopic ellipsometry to characterize and apply the optical constants of hollow gold nanoparticles. , 2009, ACS nano.

[50]  Peter Nordlander,et al.  Finite-Difference Time-Domain Modeling of the Optical Properties of Nanoparticles near Dielectric Substrates† , 2010 .

[51]  Nikolai G. Khlebtsov,et al.  Optical properties and biomedical applications of plasmonic nanoparticles , 2010 .

[52]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[53]  Neetu Singh,et al.  Nanoparticles that communicate in vivo to amplify tumour targeting. , 2011, Nature materials.

[54]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[55]  Tammy Y. Olson,et al.  Hollow Gold−Silver Double-Shell Nanospheres: Structure, Optical Absorption, and Surface-Enhanced Raman Scattering , 2008 .