Crystal plasticity applied to aggregates under non-symmetric cyclic loadings : Mechanical analysis and model order reduction

The field of mechanics, particularly micromechanics, has undergone great developments. It is well known that plastic flow in a single crystal is anisotropic which may be modeled using phenomenological constitutive laws at the mesoscale. The idea behind the development of micromechanical laws is to relate the behavior of each individual grain, predict evolving plasticity, and in turn account for the macroscopic properties of the structure. Two physical problems have been considered is this thesis i.e. the behavior of materials when they are asymmetrically loaded under cyclic stress or strain based boundary conditions. These loadings cause incremental strain accumulation or mean stress relaxation at the macroscopic scale. Conventional numerical models give an excess of both quantities. In this work it is shown that a mesoscale crystal plasticity finite element approach can give an answer to both problems. Different mechanical states existing in cyclically loaded structures are scrutinized and a micromechanical interpretation is given about their characteristic macroscopic behavior. Statistical results of different constitutive quantities within a polycrystal are also analyzed which give a new insight into what is happening at a local level. More importantly, the focus of this work is to pinpoint critical local regions of failure in the component and to characterize why these regions are prone to damage. The other part of the thesis pertains to big data problems in computational materials science. While solving large scale finite element problems, vast amounts of computational resources are utilized and many a times the evolving results are discarded after studying; not using them for future predictions. In this work it is shown that by utilizing already generated data, new test cases may be predicted from previous simulations. The method employed is called hybrid hyper-reduction which uses an unsupervised machine learning protocol coupled with the gappy POD to run reduced finite element simulations. Low cycle fatigue in a nickel iron based super alloy (Inconel 718) is taken as a test case.

[1]  M. Knezevic,et al.  Low cycle fatigue behavior of direct metal laser sintered Inconel alloy 718 , 2016 .

[2]  Zdeněk P. Bažant,et al.  Mechanics of solid materials , 1992 .

[3]  Michael A. Groeber,et al.  Modeling Cyclic Deformation of HSLA Steels Using Crystal Plasticity , 2004 .

[4]  Elías Cueto,et al.  On the ”A Priori” Model Reduction: Overview and Recent Developments , 2020 .

[5]  K. S. Kim,et al.  Ratcheting and fatigue behavior of a copper alloy under uniaxial cyclic loading with mean stress , 2009 .

[6]  Hong Hao,et al.  A study on the mean stress relaxation behavior of 2124-T851 aluminum alloy during low-cycle fatigue at different strain ratios , 2015 .

[7]  M. Rubin,et al.  A rate-independent crystal plasticity model with a smooth elastic–plastic transition and no slip indeterminacy , 2016 .

[8]  Genki Yagawa,et al.  Parallel finite elements on a massively parallel computer with domain decomposition , 1993 .

[9]  Sylvain Calloch,et al.  Ratchetting under tension–torsion loadings: experiments and modelling , 2000 .

[10]  Philippe Bocher,et al.  Sub-Grain Scale Digital Image Correlation by Electron Microscopy for Polycrystalline Materials during Elastic and Plastic Deformation , 2016 .

[11]  Shashwat Sinha,et al.  Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments , 2006 .

[12]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[13]  D. McDowell,et al.  Cyclic plasticity experiments and polycrystal plasticity modeling of three distinct Ti alloy microstructures , 2018 .

[14]  D. McDowell,et al.  Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6 , 2017 .

[15]  Ahmed K. Noor,et al.  On making large nonlinear problems small , 1982 .

[16]  K. Karhunen Zur Spektraltheorie stochastischer prozesse , 1946 .

[17]  Dierk Raabe,et al.  Experimental investigation of plastic grain interaction , 2002 .

[18]  Georges Cailletaud,et al.  Single Crystal Modeling for Structural Calculations: Part 1—Model Presentation , 1991 .

[19]  Dierk Raabe,et al.  Virtual material testing for stamping simulations based on polycrystal plasticity , 2009 .

[20]  Dierk Raabe,et al.  Investigation of Three-Dimensional Aspects of Grain-Scale Plastic Surface Deformation of an Aluminum Oligocrystal , 2008 .

[21]  S. Kyriakides,et al.  Ratcheting of cyclically hardening and softening materials: I. Uniaxial behavior , 1994 .

[22]  F. Roters,et al.  Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals , 2004 .

[23]  Georges Cailletaud,et al.  On the selection of active slip systems in crystal plasticity , 2005 .

[24]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[25]  David L. McDowell,et al.  Microstructure-scale modeling of HCF deformation , 2003 .

[26]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[27]  P. Stern,et al.  Automatic choice of global shape functions in structural analysis , 1978 .

[28]  Elizabeth A. Holm,et al.  The effect of microstructural representation on simulations of microplastic ratcheting , 2010 .

[29]  T. Sawaguchi,et al.  Superior fatigue life of Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy under asymmetric cyclic loading with tensile mean strain , 2019, Materials Science and Engineering: A.

[30]  N. Nguyen,et al.  A general multipurpose interpolation procedure: the magic points , 2008 .

[31]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[32]  Daniel Kujawski,et al.  Effect of mean stress and ratcheting strain on fatigue life of steel , 1996 .

[33]  Julien Yvonnet,et al.  The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains , 2007, J. Comput. Phys..

[34]  G. Proust,et al.  Fatigue crack initiation life prediction for aluminium alloy 7075 using crystal plasticity finite element simulations , 2015 .

[35]  Siegfried Fouvry,et al.  Numerical prediction of fretting contact durability using energy wear approach: Optimisation of finite-element model , 2007 .

[36]  J. Morrow,et al.  LOCAL STRESS-STRAIN APPROACH TO CUMULATIVE FATIGUE DAMAGE ANALYSIS , 1974 .

[37]  Vasily V. Bulatov,et al.  On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals , 2004 .

[38]  D. McDowell,et al.  Microstructure-sensitive computational modeling of fatigue crack formation , 2010 .

[39]  E. Finot,et al.  Local Ratcheting Phenomena in the Cyclic Behavior of Polycrystalline Tantalum , 2019, JOM.

[40]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[41]  Weiwei Yu,et al.  Effect of mean stress and ratcheting strain on the low cycle fatigue behavior of a wrought 316LN stainless steel , 2016 .

[42]  C. Keller,et al.  Experimental contribution for better understanding of ratcheting in 304L SS , 2017, International Journal of Mechanical Sciences.

[43]  Patrick R. Amestoy,et al.  Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver , 2017 .

[44]  L. Sirovich TURBULENCE AND THE DYNAMICS OF COHERENT STRUCTURES PART , 2016 .

[45]  Christian Thaulow,et al.  A complete Gurson model approach for ductile fracture , 2000 .

[46]  A. Pineau,et al.  Low cycle fatigue behavior of inconel 718 at 298 K and 823 K , 1977 .

[47]  J. Quinta da Fonseca,et al.  Plastic Strain Mapping with Sub-micron Resolution Using Digital Image Correlation , 2013 .

[48]  S. Park,et al.  Ratcheting behaviour and mean stress considerations in uniaxial low‐cycle fatigue of Inconel 718 at 649 °C , 2007 .

[49]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[50]  A. Rollett,et al.  Fatigue crack initiation, slip localization and twin boundaries in a nickel-based superalloy , 2014 .

[51]  Dierk Raabe,et al.  On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – Theory, experiments, and simulations , 2006 .

[52]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[53]  Stelios Kyriakides,et al.  Ratcheting of cyclically hardening and softening materials: II. Multiaxial behavior , 1994 .

[54]  Stephanie Boehm,et al.  Non Linear Mechanics Of Materials , 2016 .

[55]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[56]  J. L. Bernard,et al.  Evaluation of the Resistance of Type 316 Stainless Steel Against Progressive Deformation , 1982 .

[57]  Ramon Codina,et al.  A domain decomposition strategy for reduced order models. Application to the incompressible Navier–Stokes equations , 2013 .

[58]  V. Buljak Proper Orthogonal Decomposition and Radial Basis Functions for Fast Simulations , 2012 .

[59]  J. Achenbach THE LINEARIZED THEORY OF ELASTICITY , 1973 .

[60]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[61]  J. F. Butler,et al.  Analysis of an aluminum single crystal with unstable initial orientation (001) [110] in channel die compression , 1991 .

[62]  Somnath Ghosh,et al.  Crystal plasticity FE study of the effect of thermo-mechanical loading on fatigue crack nucleation in titanium alloys , 2016 .

[63]  Dierk Raabe,et al.  The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals , 2009 .

[64]  D. Das,et al.  Effect of stress parameters on ratcheting deformation stages of polycrystalline OFHC copper , 2011 .

[65]  M. A. Urchegui,et al.  Finite element modeling and experimental validation of fretting wear scars in thin steel wires , 2012 .

[66]  Felix Fritzen,et al.  Space–time model order reduction for nonlinear viscoelastic systems subjected to long-term loading , 2018 .

[67]  D. McDowell,et al.  Microstructure-based crystal plasticity modeling of cyclic deformation of Ti–6Al–4V , 2007 .

[68]  Ali Fatemi,et al.  Effects of mean stress on fatigue behaviour of a hardened carbon steel , 1991 .

[69]  S. Forest,et al.  Simulations of stress–strain heterogeneities in copper thin films : texture and substrate effects , 2007 .

[70]  Andrew Vince,et al.  A framework for the greedy algorithm , 2002, Discret. Appl. Math..

[71]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[72]  G. Cailletaud,et al.  FE modelling of bainitic steels using crystal plasticity , 2008 .

[73]  David L. McDowell,et al.  Estimating fatigue sensitivity to polycrystalline Ni‐base superalloy microstructures using a computational approach , 2007 .

[74]  D. Dimiduk,et al.  A crystal-plasticity FEM study on effects of simplified grain representation and mesh types on mesoscopic plasticity heterogeneities , 2012 .

[75]  David Ryckelynck,et al.  Toward “green” mechanical simulations in materials science , 2010 .

[76]  M. Knezevic,et al.  Latent hardening within the elasto-plastic self-consistent polycrystal homogenization to enable the prediction of anisotropy of AA6022-T4 sheets , 2018, International Journal of Plasticity.

[77]  David L. McDowell,et al.  Microstructure-sensitive modeling of polycrystalline IN 100 , 2008 .

[78]  D. McDowell,et al.  Microstructure-sensitive modeling: Application to fretting contacts , 2009 .

[79]  Yannis P. Korkolis,et al.  Dual-phase steel sheets under cyclic tension–compression to large strains: Experiments and crystal plasticity modeling , 2016 .

[80]  Martin Diehl,et al.  A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations , 2016 .

[81]  Nobutada Ohno,et al.  Kinematic hardening rules with critical state of dynamic recovery, part II: Application to experiments of ratchetting behavior , 1993 .

[82]  M. Mills,et al.  In-Situ Mechanical Testing for Characterizing Strain Localization During Deformation at Elevated Temperatures , 2012 .

[83]  Pritam Chakraborty,et al.  Wavelet transformation based multi-time scaling method for crystal plasticity FE simulations under cyclic loading , 2010 .

[84]  Erwan Liberge,et al.  On the sensitivity of the POD technique for a parameterized quasi-nonlinear parabolic equation , 2014, Adv. Model. Simul. Eng. Sci..

[85]  Georges Cailletaud,et al.  Multi-mechanism models for the description of ratchetting: Effect of the scale transition rule and of the coupling between hardening variables , 2007 .

[86]  G. Cailletaud,et al.  Modeling of latent hardening produced by complex loading paths in FCC alloys , 2013 .

[87]  Guozheng Kang,et al.  A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys , 2013 .

[88]  H. Proudhon,et al.  3D simulation of short fatigue crack propagation by finite element crystal plasticity and remeshing , 2016 .

[89]  H. D. Chandler,et al.  Low cycle fatigue under tensile mean stresses where cyclic life extension occurs , 2001 .

[90]  Dierk Raabe,et al.  Crystal Plasticity Finite Element Methods: in Materials Science and Engineering , 2010 .

[91]  Georges Cailletaud,et al.  Macro versus micro-scale constitutive models in simulating proportional and nonproportional cyclic and ratcheting responses of stainless steel 304 , 2009 .

[92]  A. Rollett,et al.  Modeling the viscoplastic micromechanical response of two-phase materials using Fast Fourier Transforms , 2011 .

[93]  S. Daly,et al.  Digital Image Correlation under Scanning Electron Microscopy: Methodology and Validation , 2013 .

[94]  J. Michel,et al.  Nonuniform transformation field analysis , 2003 .

[95]  A. Wilkinson,et al.  Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal , 2007 .

[96]  M. Sangid,et al.  The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity , 2018, Materials & Design.

[97]  David Ryckelynck Hyper‐reduction of mechanical models involving internal variables , 2009 .

[98]  Jean-Louis Chaboche,et al.  Cyclic inelastic constitutive equations and their impact on the fatigue life predictions , 2012 .

[99]  F. Dunne,et al.  Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys , 2007 .

[100]  David Ryckelynck,et al.  An efficient adaptive strategy to master the global quality of viscoplastic analysis , 2000 .

[101]  T. Bieler,et al.  Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications , 2010 .

[102]  John W. Bull,et al.  Numerical analysis and modelling of composite materials , 1996 .

[103]  R. Asaro,et al.  Shear band formation in plane strain compression , 1988 .

[104]  R. H. Wagoner,et al.  On the criteria for slip transmission across interfaces in polycrystals , 1992 .

[105]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[106]  Marc G. D. Geers,et al.  A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials , 2017, J. Comput. Phys..

[107]  F. Sun,et al.  Microscale modelling of the deformation of a martensitic steel using the Voronoi Tessellation method , 2018 .

[108]  J. Chaboche Time-independent constitutive theories for cyclic plasticity , 1986 .

[109]  John Lambros,et al.  Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X , 2012 .

[110]  Erwan Liberge,et al.  Reduced order modelling method via proper orthogonal decomposition (POD) for flow around an oscillating cylinder , 2010 .

[111]  David L. McDowell,et al.  Plasticity in polycrystalline fretting fatigue contacts , 2006 .

[112]  D. McDowell,et al.  Polycrystal orientation distribution effects on microslip in high cycle fatigue , 2003 .

[113]  R. Quey,et al.  A full-field crystal-plasticity analysis of bimodal polycrystals , 2020, International Journal of Solids and Structures.

[114]  D. Jeulin,et al.  Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model , 2001 .

[115]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[116]  J. W. Ju,et al.  Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity , 2015 .

[117]  D. Parks,et al.  Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density , 1999 .

[118]  A. Goodman Development of constitutive equations for computer analysis of stainless steel components , 1984 .

[119]  A. Huespe,et al.  High-performance model reduction techniques in computational multiscale homogenization , 2014 .

[120]  G. Cailletaud,et al.  F. E. calculations of copper bicrystal specimens submitted to tension-compression tests , 1994 .

[121]  Huseyin Sehitoglu,et al.  Multiaxial cyclic ratchetting under multiple step loading , 1994 .

[122]  J. Stephan,et al.  Numerical analysis of the effect of surface roughness on mechanical fields in polycrystalline aggregates , 2018 .

[123]  G. Cailletaud,et al.  Single Crystal Modeling for Structural Calculations: Part 2—Finite Element Implementation , 1991 .

[124]  J. Chaboche,et al.  Cyclic calculations and life estimation in thermomechanical fatigue , 2013 .

[125]  Anthony T. Patera,et al.  Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations , 2002 .

[126]  Jack Edmonds,et al.  Matroids and the greedy algorithm , 1971, Math. Program..

[127]  R. J.,et al.  I Strain Localization in Ductile Single Crystals , 1977 .

[128]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[129]  Dominique Jeulin,et al.  Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry , 2006 .

[130]  O. Fandeur,et al.  Numerical approach of cyclic behaviour of 316LN stainless steel based on a polycrystal modelling including strain gradients , 2013 .

[131]  Somnath Ghosh,et al.  Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal plasticity FE simulations, part I: Sensitivity analysis and parameter identification for Titanium alloys , 2019, International journal of plasticity.

[132]  Alan Needleman,et al.  An analysis of nonuniform and localized deformation in ductile single crystals , 1982 .

[133]  F. Barbe,et al.  Intergranular and intragranular behavior of polycrystalline aggregates.Part 2: Results , 2001 .

[134]  Chris H Rycroft,et al.  VORO++: a three-dimensional voronoi cell library in C++. , 2009, Chaos.

[135]  H. Proudhon,et al.  Multiscale modeling of the elasto-plastic behavior of architectured and nanostructured Cu-Nb composite wires and comparison with neutron diffraction experiments , 2019, International Journal of Plasticity.

[136]  Ne Dowling,et al.  Mean stress relaxation during cyclic straining of high strength aluminum alloys , 2009 .

[137]  H. Christ,et al.  The effect of mean stress on the high-temperature fatigue behaviour of SAE 1045 steel , 1997 .

[138]  F. Roters,et al.  Concepts for integrating plastic anisotropy into metal forming simulations , 2002 .

[139]  Dierk Raabe,et al.  Computational Materials Science: The Simulation of Materials Microstructures and Properties , 1998 .

[140]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[141]  I. Beyerlein,et al.  A crystal plasticity model incorporating the effects of precipitates in superalloys: Application to tensile, compressive, and cyclic deformation of Inconel 718 , 2017 .

[142]  G. Kang,et al.  Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation , 2010 .

[143]  Costas Soutis,et al.  Multi-scale modelling of composite material systems: The art of predictive damage modelling , 2005 .

[144]  David L. McDowell,et al.  Polycrystal plasticity simulations of fretting fatigue , 2001 .

[145]  F. Brogan,et al.  Global function approach in structural analysis: Basic approach, numerical results , 1981 .

[146]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[147]  Wolfgang Ludwig,et al.  Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials , 2018, npj Computational Materials.

[148]  Yvon Maday,et al.  A Reduced-Basis Element Method , 2002, J. Sci. Comput..

[149]  D. McDowell,et al.  Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes , 2016 .

[150]  A. Cruzado,et al.  Modeling cyclic deformation of inconel 718 superalloy by means of crystal plasticity and computational homogenization , 2017 .