A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa

[1]  D. McGillicuddy Models of harmful algal blooms: conceptual, empirical, and numerical approaches. , 2010, Journal of marine systems : journal of the European Association of Marine Sciences and Techniques.

[2]  Christopher J. Madden,et al.  Modeling of HABs and eutrophication: Status, advances, challenges , 2010 .

[3]  Jef Huisman,et al.  Nuisance foam events and Phaeocystis globosa blooms in Dutch coastal waters analyzed with fuzzy logic , 2010 .

[4]  Kieran Lyons,et al.  A simple short range model for the prediction of harmful algal events in the bays of southwestern Ireland , 2010 .

[5]  S. Yang,et al.  Azalomycin F complex is an antifungal substance produced by Streptomyces malaysiensis MJM1968 isolated from agricultural soil , 2010 .

[6]  I. Imai,et al.  Algicidal bacteria in particle-associated form and in free-living form during a diatom bloom in the Seto Inland Sea, Japan , 2010 .

[7]  D. Anderson,et al.  Approaches to monitoring, control and management of harmful algal blooms (HABs). , 2009, Ocean & coastal management.

[8]  Raphael M. Kudela,et al.  Development of a logistic regression model for the prediction of toxigenic Pseudo-nitzschia blooms in Monterey Bay, California. , 2009 .

[9]  Seong-Yun Jeong,et al.  Isolation and characterization of a marine algicidal bacterium against the harmful raphidophyceae Chattonella marina , 2009, The Journal of Microbiology.

[10]  R. Epand,et al.  Tocopherols and tocotrienols in membranes: a critical review. , 2008, Free radical biology & medicine.

[11]  Seong-Yun Jeong,et al.  Isolation, identification, and algicidal activity of marine bacteria against Cochlodinium polykrikoides , 2008, Journal of Applied Phycology.

[12]  N. Jiao,et al.  Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense , 2007 .

[13]  Y. Chisti,et al.  Biotechnological significance of toxic marine dinoflagellates. , 2007, Biotechnology advances.

[14]  M. Johansen,et al.  The use of fuzzy logic for data analysis and modelling of European harmful algal blooms: results of the HABES project , 2006 .

[15]  Aditee Mitra,et al.  Promotion of harmful algal blooms by zooplankton predatory activity , 2006, Biology Letters.

[16]  Gang Pan,et al.  Removal of harmful cyanobacterial blooms in Taihu Lake using local soils. III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. , 2006, Environmental pollution.

[17]  M. Tomczak The Importance of Being Quantitative , 2005 .

[18]  Hong-Ying Hu,et al.  Isolation and Characterization of a Novel Antialgal Allelochemical from Phragmites communis , 2005, Applied and Environmental Microbiology.

[19]  Patrick Gentien,et al.  The global, complex phenomena of harmful algal blooms , 2005 .

[20]  D. Anderson,et al.  Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals , 2005 .

[21]  J. Choi,et al.  A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment , 2004 .

[22]  D. Kirchman,et al.  A bacterium that inhibits the growth of Pfiesteria piscicida and other dinoflagellates , 2004 .

[23]  D. Anderson,et al.  Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation , 2004 .

[24]  Farooq Azam,et al.  Algicidal Bacteria in the Sea and their Impact on Algal Blooms1 , 2004, The Journal of eukaryotic microbiology.

[25]  Seong-Yun Jeong,et al.  Bacillamide, a Novel Algicide from the Marine Bacterium, Bacillus sp. SY‐1, Against the Harmful Dinoflagellate, Cochlodinium polykrikoides. , 2004 .

[26]  S. Baek,et al.  Mitigation of harmful algal blooms by sophorolipid , 2003 .

[27]  K. Schrader,et al.  Novel Derivatives of 9,10-Anthraquinone Are Selective Algicides against the Musty-Odor Cyanobacterium Oscillatoria perornata , 2003, Applied and Environmental Microbiology.

[28]  H. Jeong,et al.  NaOCl produced by electrolysis of natural seawater as a potential method to control marine red-tide dinoflagellates , 2002 .

[29]  G. Doucette,et al.  Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae) , 2002 .

[30]  D. Anderson,et al.  Removal of red- and brown-tide cells using clay flocculation. I. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens , 2001 .

[31]  R H Pierce,et al.  Innovative techniques for harmful algal toxin analysis , 2001, Environmental toxicology and chemistry.

[32]  H. Ohtake,et al.  Involvement of an Extracellular Protease in Algicidal Activity of the Marine Bacterium Pseudoalteromonassp. Strain A28 , 2000, Applied and Environmental Microbiology.

[33]  H. Sano,et al.  β-Cyanoalanine Production by Marine Bacteria on Cyanide-Free Medium and Its Specific Inhibitory Activity toward Cyanobacteria , 2000, Applied and Environmental Microbiology.

[34]  J. Ivanova,et al.  Influence of physiological factors on the lysis effect of Cytophaga on the red microalga Rhodella reticulata , 2000, Journal of applied microbiology.

[35]  Y. Hodoki,et al.  Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake , 1998, Journal of Applied Phycology.

[36]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[37]  M. Matsuo,et al.  Production of thiotropocin by a marine bacterium, Caulobacter sp. and its antimicroalgal activities , 1997 .

[38]  Donald M. Anderson,et al.  Turning back the harmful red tide , 1997, Nature.

[39]  G. Doucette,et al.  Interactions between bacteria and harmful algae: a review. , 1995, Natural toxins.

[40]  A. Zeeck,et al.  Secondary metabolites by chemical screening. 20. Decarestrictines, a new family of inhibitors of cholesterol biosynthesis from Penicillium: III. Decarestrictines E to M. , 1992, The Journal of antibiotics.

[41]  G. Seibert,et al.  Secondary metabolites by chemical screening. 17. Nigericinol derivatives: synthesis, biological activities, and modeling studies. , 1992, Journal of medicinal chemistry.

[42]  M. Sancelme,et al.  Microbial conversion of nigericin in three successive steps, by Sebekia benihana. , 1988, The Journal of antibiotics.

[43]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[44]  J. A. Hellebust,et al.  EXCRETION OF SOME ORGANIC COMPOUNDS BY MARINE PHYTOPLANKTON1 , 1965 .

[45]  Duan Shun-shan Predicting the growth of Phaeocystis globosa under phosphorus-replete conditions based on chlorophyll fluorescence determination , 2008 .

[46]  E. Garcés,et al.  Harmful microalgae blooms (HAB); problematic and conditions that induce them. , 2006, Marine pollution bulletin.

[47]  Qi Yu-zao The Characteristics of Fluorescence Emission Spectra in Vivo of Phaeocystis globosa and Quantitative Analysis , 2006 .

[48]  Christiane Lancelot,et al.  Phaeocystis blooms in the global ocean and their controlling mechanisms: a review , 2005 .

[49]  Huang Wei Structure elucidation and biological property of minor antibiotic in Streptomyces hygroscopicus NND-52 , 2002 .

[50]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .

[51]  W. Smith,et al.  Culture of Marine Invertebrate Animals , 1975, Springer US.