Stack words, standard tableaux and Baxter permutations
暂无分享,去创建一个
[1] G. Kreweras,et al. Sur les éventails de segments , 1970 .
[2] J. S. Frame,et al. The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.
[3] Julian West,et al. Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .
[4] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .
[5] G. Baxter,et al. On fixed points of the composite of commuting functions , 1964 .
[6] Robert Cori,et al. Shuffle of parenthesis systems and baxter permutations , 1986, J. Comb. Theory, Ser. A.
[7] Dominique Gouyou-Beauchamps,et al. Standard Young Tableaux of Height 4 and 5 , 1989, Eur. J. Comb..
[8] Doron Zeilberger,et al. A proof of Julian West's conjecture that the number of two-stacksortable permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!) , 1992, Discret. Math..
[9] Serge Dulucq,et al. Permutations de Baxter , 1995 .
[10] Fan Chung Graham,et al. The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.
[11] C.L Mallows,et al. Baxter Permutations Rise Again , 1979, J. Comb. Theory, Ser. A.
[12] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[13] Julian West,et al. Sorting Twice Through a Stack , 1993, Theor. Comput. Sci..
[14] S. Gire,et al. Arbres, permutations à motifs exclus et cartes planaires : quelques problèmes algorithmiques et combinatoires , 1993 .
[15] W. T. Tutte. A Census of Planar Maps , 1963, Canadian Journal of Mathematics.