Stack words, standard tableaux and Baxter permutations

Abstract The origin of this work is based on the enumeration of stack sortable permutations [11, 17, 18]. The problem, particularly in case of two stacks, exhibits classical objects in combinatorics such as permutations with forbidden subsequences, nonseparable planar maps [4, 5], and also standard Young tableaux if we are interested in the movements of stacks. So, we show that the number of 3 × n rectangular standard Young tableaux which avoid two consecutive integers on second row is c2n (where cn = (2n)!/(n + 1)!n!) and there is a one-to-one correspondence between the same tableaux which avoid two consecutive integers on the same row and Baxter permutations which are enumerated by . We also give formulas enumerating these objects according to various parameters.

[1]  G. Kreweras,et al.  Sur les éventails de segments , 1970 .

[2]  J. S. Frame,et al.  The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.

[3]  Julian West,et al.  Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .

[4]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[5]  G. Baxter,et al.  On fixed points of the composite of commuting functions , 1964 .

[6]  Robert Cori,et al.  Shuffle of parenthesis systems and baxter permutations , 1986, J. Comb. Theory, Ser. A.

[7]  Dominique Gouyou-Beauchamps,et al.  Standard Young Tableaux of Height 4 and 5 , 1989, Eur. J. Comb..

[8]  Doron Zeilberger,et al.  A proof of Julian West's conjecture that the number of two-stacksortable permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!) , 1992, Discret. Math..

[9]  Serge Dulucq,et al.  Permutations de Baxter , 1995 .

[10]  Fan Chung Graham,et al.  The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.

[11]  C.L Mallows,et al.  Baxter Permutations Rise Again , 1979, J. Comb. Theory, Ser. A.

[12]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[13]  Julian West,et al.  Sorting Twice Through a Stack , 1993, Theor. Comput. Sci..

[14]  S. Gire,et al.  Arbres, permutations à motifs exclus et cartes planaires : quelques problèmes algorithmiques et combinatoires , 1993 .

[15]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.