A survey of shadowing methods for numerical solutions of ordinary differential equations

A shadow is an exact solution to a set of equations that remains close to a numerical solution for a long time. Shadowing can thus be used as a form of backward error analysis for numerical solutions to ordinary differential equations. This survey introduces the reader to shadowing with a detailed tour of shadowing algorithms and practical results obtained over the last 15 years.

[1]  J. D. Farmer,et al.  Optimal shadowing and noise reduction , 1991 .

[2]  Wayne B Hayes Shadowing high-dimensional hamiltonian systems: the gravitational N-body problem. , 2003, Physical review letters.

[3]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[4]  Shadowing based reliability decay in softened n-body simulations , 2002, astro-ph/0211128.

[5]  S. Pilyugin Shadowing in dynamical systems , 1999 .

[6]  Qualitative properties of modified equations , 1999 .

[7]  Shui-Nee Chow,et al.  On the numerical computation of orbits of dynamical systems: The one-dimensional case , 1991 .

[8]  Daniel Stoffer,et al.  Rigorous verification of chaotic behaviour of maps using validated shadowing , 1999 .

[9]  M. Valluri,et al.  Chaos and Mixing in Triaxial Stellar Systems , 1996, astro-ph/9602079.

[10]  Wolf-Jürgen Beyn,et al.  On invariant closed curves for one-step methods , 1987 .

[11]  Celso Grebogi,et al.  How long do numerical chaotic solutions remain valid , 1997 .

[12]  H. Koçak,et al.  Shadowing orbits of ordinary differential equations , 1994 .

[13]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[14]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[15]  R. Bowen ω-Limit sets for Axiom A diffeomorphisms , 1975 .

[16]  Mark Ainsworth,et al.  The graduate student's guide to numerical analysis '98 : lecture notes from the VIII EPSRC Summer School in Numerical Analysis , 1999 .

[17]  Brian A. Coomes Shadowing orbits of ordinary differential equations on invariant submanifolds , 1997 .

[18]  Celso Grebogi,et al.  Do numerical orbits of chaotic dynamical processes represent true orbits? , 1987, J. Complex..

[19]  S. Smale Differentiable dynamical systems , 1967 .

[20]  Erik S. Van Vleck Numerical Shadowing Near Hyperbolic Trajectories , 1995, SIAM J. Sci. Comput..

[21]  Andrew M. Stuart,et al.  On the qualitative properties of modified equations , 1997 .

[22]  A Shadowing Theorem for ordinary differential equations , 1995 .

[23]  Grebogi,et al.  Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. , 1994, Physical review letters.

[24]  A. Boyarsky,et al.  Why computers like lebesgue measure , 1988 .

[25]  Celso Grebogi,et al.  Numerical orbits of chaotic processes represent true orbits , 1988 .

[26]  Robert D. Skeel,et al.  Integration Schemes for Molecular Dynamics and Related Applications , 1999 .

[27]  W. Hayes,et al.  Ecien t Shadowing of High Dimensional Chaotic Systems with the Large Astrophysical N-body Problem as an Example , 1995 .

[28]  Kenneth J. Palmer,et al.  Exponential Dichotomies, the Shadowing Lemma and Transversal Homoclinic Points , 1988 .

[29]  N. Nedialkov,et al.  Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation , 1999 .

[30]  S. Tremaine,et al.  On the reliability of gravitational N-body integrations , 1992 .

[31]  Robert M Corless Continued fractions and chaos , 1992 .

[32]  Robert M. Corless,et al.  What good are numerical simulations of chaotic dynamical systems , 1994 .

[33]  Kenneth R. Jackson,et al.  Rigorous Shadowing of Numerical Solutions of Ordinary Differential Equations by Containment , 2003, SIAM J. Numer. Anal..

[34]  Hüseyin Koçak,et al.  Long periodic shadowing , 1997, Numerical Algorithms.

[35]  Grebogi,et al.  Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. , 1990, Physical review letters.

[36]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[37]  James A. Yorke,et al.  Rigorous verification of trajectories for the computer simulation of dynamical systems , 1991 .

[38]  K. P. Hadeler Shadowing orbits and Kantorovich's theorem , 1996 .

[39]  Gene H. Golub,et al.  Matrix computations , 1983 .

[40]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[41]  Shui-Nee Chow,et al.  A Shadowing Lemma Approach to Global Error Analysis for Initial Value ODEs , 1994, SIAM J. Sci. Comput..

[42]  Shui-Nee Chow,et al.  On the numerical computation of orbits of dynamical systems: The higher dimensional case , 1992, J. Complex..

[43]  Slawomir T. Fryska,et al.  Computer dynamics and shadowing of chaotic orbits , 1992 .

[44]  Bradley A. Shadwick,et al.  Exactly Conservative Integrators , 1998, SIAM J. Appl. Math..

[45]  Brian A. Coomes,et al.  Rigorous computational shadowing of orbits of ordinary differential equations , 1995 .

[46]  A. Iserles,et al.  Acta numerica 1992 , edited by A. Iserles. Pp. 407. £19.95 1992. ISBN 0-521-41026-6 (Cambridge University Press) , 1993, The Mathematical Gazette.

[47]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[48]  Robert M. Corless,et al.  Rationale for guaranteed ODE defect control , 1991 .

[49]  Martin Braun Differential equations and their applications , 1976 .

[50]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[51]  S. Nash,et al.  Numerical methods and software , 1990 .

[52]  Robert M. Corless,et al.  Defect-controlled numerical methods and shadowing for chaotic differential equations , 1992 .