Identities for the Univariate and Bivariate Bernstein Basis Functions
暂无分享,去创建一个
[1] George Polya,et al. Remarks on de la Vallée Poussin means and convex conformal maps of the circle. , 1958 .
[2] M. Marsden. An identity for spline functions with applications to variation-diminishing spline approximation☆ , 1970 .
[3] R. Goldman,et al. Conversion from Be´zier rectangles to Be´zier triangles , 1987 .
[4] Ingrid Brueckner. Construction of Bézier points of quadrilaterals from those of triangles , 1980 .
[5] Charles A. Micchelli,et al. Pyramid patches provide potential polynomial paradigms , 1992 .
[6] Ron Goldman,et al. Subdivision algorithms for Bézier triangles , 1983 .
[7] R. Goldman. Using degenerate Bézier triangles and tetrahedra to subdivide Bézier curves , 1982 .
[8] R. Goldman,et al. A multivariate generalization of the de Boor-fix formula , 1994 .
[9] C. D. Boor,et al. Spline approximation by quasiinterpolants , 1973 .
[10] Kang Zhao,et al. Dual bases of multivariate Bernstein-Bézier polynomials , 1988, Comput. Aided Geom. Des..
[11] Rida T. Farouki,et al. Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..
[12] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..