Turbine Nozzle Film Cooling Study Using the Pressure Sensitive Paint (PSP) Technique

The use of pressure sensitive paint (PSP) to measure film cooling effectiveness on a turbine nozzle surface was demonstrated in a high speed wind tunnel. Film cooling effectiveness was measured from a single row of holes located on a turbine vane suction surface with a shaped exit. Nitrogen gas was used to simulate film cooling flow as well as a tracer gas to indicate oxygen concentration such that film effectiveness by the mass transfer analogy could be obtained. Three blowing ratios were studied for each of the five freestream conditions: a reference condition, a reduced and an increased Reynolds number condition, and a reduced and an increased Mach number condition. The freestream turbulence intensity was kept at 12.0% for all the tests. The PSP was calibrated at various temperatures and pressures to obtain better accuracy before being applied to the airfoil surface. The film effectiveness increased with blowing ratio for all the freestream conditions. The effects of secondary flow and freestream Mach number and Reynolds number on turbine nozzle suction surface film cooling are also discussed.Copyright © 1999 by ASME