Concurrent multi-scale crush simulations with a crystal plasticity model

Abstract The crush behavior of polycrystalline metallic square tubes under quasi-static axial loading condition is investigated through a mesoscale crystal plasticity model embedded in an explicit finite element simulation code as a concurrent multiscale model. The boundary value problem is defined at the local continuum scale whereas the material behavior is modeled at the mesoscale through crystal plasticity defined in a representative volume element. The anisotropic behavior of the tubes emerges from the texture induced by the large plastic deformations created during the manufacturing process. In this work, this effect is modeled by considering the texture generated by deforming a single element model with an embedded polycrystalline aggregate of face center cubic (FCC) crystals under basic loading paths, including uniaxial tension, uniaxial compression, and simple shear. This initial texture is then used at each integration point in the explicit crush simulations of a square tube model made of an FCC aluminum alloy. As energy absorption is dominated by the plastic collapse mechanisms at the corner elements, the influence of the initial texture and its evolution during crush are found to be significant.

[1]  Masoud Rais-Rohani,et al.  Multi‐Attribute Integrated Forming‐Crush Simulation Optimization Using Internal State Variable Model , 2011 .

[2]  Wei Chen,et al.  Multiscale methods for mechanical science of complex materials: Bridging from quantum to stochastic multiresolution continuum , 2010 .

[3]  R. Komanduri,et al.  Multiscale simulation from atomistic to continuum – coupling molecular dynamics (MD) with the material point method (MPM) , 2006 .

[4]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[5]  P. Chung,et al.  An Atomistic-to-Continuum Framework for Nonlinear Crystal Mechanics Based on Asymptotic Homogenization , 2006 .

[6]  F. Roters,et al.  Concepts for integrating plastic anisotropy into metal forming simulations , 2002 .

[7]  O. Hopperstad,et al.  Static and dynamic crushing of square aluminium extrusions with aluminium foam filler , 2000 .

[8]  Dierk Raabe,et al.  Crystal plasticity simulation study on the influence of texture on earing in steel , 2005 .

[9]  H. Wenk,et al.  Texture and Anisotropy , 2004 .

[10]  H. Aretz A simple isotropic-distortional hardening model and its application in elastic-plastic analysis of localized necking in orthotropic sheet metals , 2008 .

[11]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[12]  F. Barlat,et al.  Anisotropic potentials for plastically deforming metals , 1993 .

[13]  V. Shenoy Multi-scale modeling strategies in materials science—The quasicontinuum method , 2003 .

[14]  Yannis F. Dafalias,et al.  Orientation distribution function in non-affine rotations , 2001 .

[15]  Masoud Rais-Rohani,et al.  Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes , 2011 .

[16]  U. F. Kocks,et al.  Application of polycrystal plasticity to sheet forming , 1994 .

[17]  J. G. Tom,et al.  A study on an axial crush configuration response of thin-wall, steel box components: The quasi-static experiments , 2006 .

[18]  Ali Najafi,et al.  Axial collapse of thin-walled, multi-corner single- and multi-cell tubes , 2009 .

[19]  Jacob Fish,et al.  Bridging the scales in nano engineering and science , 2006 .

[20]  Y. Dafalias Orientational evolution of plastic orthotropy in sheet metals , 2000 .

[21]  T. Wierzbicki,et al.  Axial Crushing of Multicorner Sheet Metal Columns , 1989 .

[22]  U. F. Kocks,et al.  A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable , 1988 .

[23]  R. Hill,et al.  CXXVIII. A theoretical derivation of the plastic properties of a polycrystalline face-centred metal , 1951 .

[24]  E. Nakamachi,et al.  Investigations of the formability of BCC steel sheets by using crystalline plasticity finite element analysis , 2002 .

[25]  R. Borst,et al.  Dynamic Crack Propagation Using a Combined Molecular Dynamics/Extended Finite Element Approach , 2010 .

[26]  T. Wierzbicki,et al.  Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption , 2001 .

[27]  David J. Benson,et al.  Constitutive description of dynamic deformation: physically-based mechanisms , 2002 .

[28]  Wing Kam Liu,et al.  Bridging atomistic/continuum scales in solids with moving dislocations , 2007 .

[29]  R. Hill,et al.  XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. , 1951 .

[30]  Lallit Anand,et al.  Elasto-viscoplastic constitutive equations for polycrystalline metals: Application to tantalum , 1998 .

[31]  G. C. Johnson,et al.  Three-dimensional deformation process simulation with explicit use of polycrystal plasticity models , 1993 .

[32]  Ya-Fang Guo,et al.  Combined atomistic simulation and continuum mechanics : Size-dependent behavior of atomistic simulation for brittle fracture in bcc-iron , 2006 .

[33]  M. François A plasticity model with yield surface distortion for non proportional loading , 2001 .

[34]  Dierk Raabe,et al.  Using texture components in crystal plasticity finite element simulations , 2004 .

[35]  A. Otubushin,et al.  Detailed validation of a non-linear finite element code using dynamic axial crushing of a square tube , 1998 .

[36]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .

[37]  Frédéric Barlat,et al.  Anisotropic plastic potentials for polycrystals and application to the design of optimum blank shapes in sheet forming , 1994 .

[38]  E. B. Marin,et al.  On modelling the elasto-viscoplastic response of metals using polycrystal plasticity , 1998 .

[39]  Ronald Gronsky,et al.  Quasi-static axial crush response of a thin-wall, stainless steel box component , 2004 .

[40]  O. Hopperstad,et al.  Optimum design for energy absorption of square aluminium columns with aluminium foam filler , 2001 .

[41]  Michael Ortiz,et al.  Quasicontinuum models of fracture and plasticity , 1998 .

[42]  Egor P. Popov,et al.  distortional Hardening Rules for Metal Plasticity , 1983 .

[43]  W. Abramowicz,et al.  Dynamic axial crushing of square tubes , 1984 .

[44]  T. Bieler,et al.  Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications , 2010 .

[45]  T. Wierzbicki,et al.  On the Crushing Mechanics of Thin-Walled Structures , 1983 .

[46]  Geoffrey H. Campbell,et al.  Multi-scale modeling of polycrystal plasticity: a workshop report , 1998 .

[47]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[48]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[49]  O. Hopperstad,et al.  Static and dynamic axial crushing of square thin-walled aluminium extrusions , 1996 .

[50]  S ZijlstraEeuwe,et al.  Goedecker‐Teter‐Hutter擬ポテンシャルに対し最適なGauss基底系 , 2009 .

[51]  G. Cheng,et al.  A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns , 2007 .

[52]  E. B. Marin,et al.  A Nonlocal Phenomenological Anisotropic Finite Deformation Plasticity Model Accounting for Dislocation Defects , 2002 .

[53]  Omar Faruque,et al.  Extruded Aluminum Crash Can Topology for Maximizing Specific Energy Absorption , 2008 .

[54]  W. Abramowicz,et al.  Thin-walled structures as impact energy absorbers , 2003 .

[55]  Douglas J. Bammann,et al.  A model of crystal plasticity containing a natural length scale , 2001 .

[56]  E. B. Marin,et al.  Elastoplastic finite element analyses of metal deformations using polycrystal constitutive models , 1998 .

[57]  Mark F. Horstemeyer,et al.  From Atoms to Autos - A new Design Paradigm Using Microstructure-Property Modeling Part 1: Monotonic Loading Conditions , 2001 .

[58]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[59]  Heung-Soo Kim,et al.  New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency , 2002 .

[60]  Influence of initial texture on formability of aluminum sheet metal by crystal plasticity FE simulation , 2007 .

[61]  U. F. Kocks,et al.  A Mechanism for Static and Dynamic Recovery , 1979 .

[62]  Ted Belytschko,et al.  Concurrently coupled atomistic and XFEM models for dislocations and cracks , 2009 .