High-energy in-fiber pulse amplification for coherent lidar applications.

An Er:Yb codoped fiber amplifier chain for the generation of pulses for coherent lidar applications at a wavelength near 1.5 microm is reported. The final 1.8-m-long power amplification stage had a 50-microm core diameter and yielded a 23-dB energy gain, resulting in 0.29-mJ, 100-ns pulses at a repetition rate of 4 kHz with no Brillouin scattering and an M2 of 2.1.

[1]  R. Hardesty,et al.  Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems , 1996, Proc. IEEE.

[2]  Michael Harris,et al.  Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications. , 2002, Applied optics.

[3]  J. M. Vaughan,et al.  Coherent laser radar in Europe , 1996, Proc. IEEE.

[4]  O. Steinvall,et al.  Effects of target shape and reflection on laser radar cross sections. , 2000, Applied optics.

[5]  D Letalick,et al.  All-Fiber Multifunction Continuous-Wave Coherent Laser Radar at 1.55 num for Range, Speed, Vibration, and Wind Measurements. , 2000, Applied optics.

[6]  Sammy W. Henderson,et al.  Coherent laser radar at 2 μm using solid-state lasers , 1993, IEEE Trans. Geosci. Remote. Sens..

[7]  Christophe A. Codemard,et al.  All-fiber 1.15-mJ pulsed eye-safe optical source , 2004, SPIE LASE.

[8]  Y. Jaouen,et al.  Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er/sup 3+/-Yb/sup 3+/-codoped fiber amplifier , 2003, IEEE Photonics Technology Letters.

[9]  K. Williams,et al.  158-microJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier. , 1997, Optics letters.

[10]  David N. Payne,et al.  Fabrication and characterization of Yb/sup 3+/:Er/sup 3+/ phosphosilicate fibers for lasers , 1998 .

[11]  C. Karlsson,et al.  Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance. , 1999, Applied optics.