Terminating Tableaux for Hybrid Logic with Eventualities

We present the first terminating tableau system for hybrid logic with eventualities. The system is designed as a basis for gracefully degrading reasoners. Eventualities are formulas of the form $\Diamond^*s$ that hold for a state if it can reach in n≥0 steps a state satisfying the formula s. The system is prefix-free and employs a novel clausal form that abstracts away from propositional reasoning. It comes with an elegant correctness proof. We discuss some optimizations for decision procedures.

[1]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[2]  Vaughan R. Pratt,et al.  A Near-Optimal Method for Reasoning about Action , 1980, J. Comput. Syst. Sci..

[3]  Balder ten Cate,et al.  New Results - Inference Methods for Hybrid Logics , 2006 .

[4]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[5]  Ian Horrocks,et al.  A Tableaux Decision Procedure for SHOIQ , 2005, IJCAI.

[6]  Edmund M. Clarke,et al.  Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons , 1982, Sci. Comput. Program..

[7]  Gert Smolka,et al.  Terminating Tableaux for Hybrid Logic with the Difference Modality and Converse , 2008, IJCAR.

[8]  Gert Smolka,et al.  Terminating Tableau Systems for Hybrid Logic with Difference and Converse , 2009, J. Log. Lang. Inf..

[9]  Giuseppe De Giacomo,et al.  Combining Deduction and Model Checking into Tableaux and Algorithms for Converse-PDL , 2000, Inf. Comput..

[10]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[11]  Rajeev Goré,et al.  An Optimal On-the-Fly Tableau-Based Decision Procedure for PDL-Satisfiability , 2009, CADE.

[12]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.

[13]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[14]  Gert Smolka,et al.  Spartacus: A Tableau Prover for Hybrid Logic , 2010, Electron. Notes Theor. Comput. Sci..

[15]  Balder ten Cate,et al.  Hybrid logics , 2007, Handbook of Modal Logic.

[16]  Rajeev Goré,et al.  An On-the-fly Tableau-based Decision Procedure for PDL-satisfiability , 2009, Electron. Notes Theor. Comput. Sci..

[17]  Torben Braüner,et al.  Tableau-based Decision Procedures for Hybrid Logic , 2006, J. Log. Comput..

[18]  Patrick Blackburn,et al.  Termination for Hybrid Tableaus , 2007, J. Log. Comput..

[19]  Franz Baader Augmenting Concept Languages by Transitive Closure of Roles: An Alternative to Terminological Cycles , 1991, IJCAI.

[20]  Oliver Friedmann,et al.  A Solver for Modal Fixpoint Logics , 2010, Electron. Notes Theor. Comput. Sci..

[21]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[22]  Frank Wolter,et al.  Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning) , 2006 .

[23]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[24]  W. Schneider,et al.  Terminating Tableaux for Modal Logic with Transitive Closure submitted , 2009 .

[25]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[26]  Ulrike Sattler,et al.  The Hybrid µ-Calculus , 2001, IJCAR.

[27]  I. Horrocks,et al.  A Tableau Decision Procedure for $\mathcal{SHOIQ}$ , 2007, Journal of Automated Reasoning.