The dual optimizer for the growth-optimal portfolio under transaction costs

We consider the maximization of the long-term growth rate in the Black–Scholes model under proportional transaction costs as in Taksar et al. (Math. Oper. Res. 13:277–294, 1988). Similarly as in Kallsen and Muhle-Karbe (Ann. Appl. Probab. 20:1341–1358, 2010) for optimal consumption over an infinite horizon, we tackle this problem by determining a shadow price, which is the solution of the dual problem. It can be calculated explicitly up to determining the root of a deterministic function. This in turn allows one to explicitly compute fractional Taylor expansions, both for the no-trade region of the optimal strategy and for the optimal growth rate.

[1]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[2]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[3]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[4]  M. D. MacLaren The Art of Computer Programming. Volume 2: Seminumerical Algorithms (Donald E. Knuth) , 1970 .

[5]  H. Gould Coefficient Identities for Powers of Taylor and Dirichlet Series , 1974 .

[6]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[7]  M. Barlow Inequalities for upcrossings of semimartingales via skorohod embedding , 1983 .

[8]  Stanley R. Pliska,et al.  A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios , 1986, Math. Oper. Res..

[9]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .

[10]  Michael J. Klass,et al.  A Diffusion Model for Optimal Portfolio Selection in the Presence of Brokerage Fees , 1988, Math. Oper. Res..

[11]  A. R. Norman,et al.  Portfolio Selection with Transaction Costs , 1990, Math. Oper. Res..

[12]  S. Shreve,et al.  Martingale and duality methods for utility maximization in a incomplete market , 1991 .

[13]  Neil D. Pearson,et al.  Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case , 1991 .

[14]  B. Dumas,et al.  An Exact Solution to a Dynamic Portfolio Choice Problem under Transactions Costs , 1991 .

[15]  H. Soner,et al.  Optimal Investment and Consumption with Transaction Costs , 1994 .

[16]  Jakša Cvitanić,et al.  HEDGING AND PORTFOLIO OPTIMIZATION UNDER TRANSACTION COSTS: A MARTINGALE APPROACH12 , 1996 .

[17]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[18]  P. Wilmott,et al.  An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs , 1997 .

[19]  Guy Barles,et al.  Option pricing with transaction costs and a nonlinear Black-Scholes equation , 1998, Finance Stochastics.

[20]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[21]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[22]  Hong Liu,et al.  Optimal Portfolio Selection with Transaction Costs and Finite Horizons , 2002 .

[23]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae (Second Edition) , 2003 .

[24]  Steven E. Shreve,et al.  Asymptotic analysis for optimal investment and consumption with transaction costs , 2004, Finance Stochastics.

[25]  S. Dreyfus,et al.  Lifetime Portfolio Selection under Uncertainty: the Continuous-time Case , 2006 .

[26]  W. Schachermayer,et al.  Consistent price systems and face-lifting pricing under transaction costs , 2008, 0803.4416.

[27]  M. Dai,et al.  Finite-Horizon Optimal Investment with Transaction Costs: A Parabolic Double Obstacle Problem , 2006 .

[28]  W. Schachermayer,et al.  Asymptotics and duality for the Davis and Norman problem , 2010, 1010.0627.

[29]  J. Muhle‐Karbe,et al.  On using shadow prices in portfolio optimization with transaction costs , 2010, 1010.4989.