Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot.

Hybrid quantum information devices that combine disparate physical systems interacting through photons offer the promise of combining low-loss telecommunications wavelength transmission with high fidelity visible wavelength storage and manipulation. The realization of such systems requires control over the waveform of single photons to achieve spectral and temporal matching. Here, we experimentally demonstrate the simultaneous wavelength translation and amplitude modulation of single photons generated by a quantum dot emitting near 1300 nm with an exponentially decaying waveform (lifetime ≈1.5 ns). Quasi-phase-matched sum-frequency generation with a pulsed 1550 nm laser creates single photons at 710 nm with a controlled amplitude modulation at 350 ps time scales.

[1]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[2]  Paul G. Kwiat,et al.  High efficiency single photon detection via frequency up-conversion , 2004 .

[3]  A. Badolato,et al.  A circular dielectric grating for vertical extraction of single quantum dot emission , 2011, 1104.0271.

[4]  D. Ljunggren,et al.  Single photons made-to-measure , 2009, 0907.0761.

[5]  Lijun Ma,et al.  Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion , 2010, 1004.2686.

[6]  Ian Farrer,et al.  Two-photon interference of the emission from electrically tunable remote quantum dots , 2010 .

[7]  I. Walmsley,et al.  Towards high-speed optical quantum memories , 2009, 0912.2970.

[8]  A Forchel,et al.  Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. , 2009, Physical review letters.

[9]  Lijun Ma,et al.  Up-conversion single-photon detector using multi-wavelength sampling techniques. , 2011, Optics express.

[10]  Hai Xu,et al.  1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm. , 2007, Optics express.

[11]  F. Bussières,et al.  Broadband waveguide quantum memory for entangled photons , 2010, Nature.

[12]  O. Alibart,et al.  A photonic quantum information interface , 2005, Nature.

[13]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[14]  Marius A Albota,et al.  Efficient single-photon counting at 1.55 microm by means of frequency upconversion. , 2004, Optics letters.

[15]  Larry A. Coldren,et al.  High-frequency single-photon source with polarization control , 2007 .

[16]  C J McKinstrie,et al.  Quantum frequency translation of single-photon states in a photonic crystal fiber. , 2010, Physical review letters.

[17]  Kumar,et al.  Observation of quantum frequency conversion. , 1992, Physical review letters.

[18]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[19]  M. Fejer,et al.  Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. , 2005, Optics letters.

[20]  A. Badolato,et al.  Optically tunable spontaneous Raman fluorescence from a single self-assembled InGaAs quantum dot. , 2009, Physical review letters.

[21]  Herbert Walther,et al.  Continuous generation of single photons with controlled waveform in an ion-trap cavity system , 2004, Nature.

[22]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  H M Wiseman,et al.  Quantum optical waveform conversion. , 2010, Physical review letters.

[24]  Jagdeep Shah,et al.  Ultrafast luminescence spectroscopy using sum frequency generation , 1988 .

[25]  Shanchao Zhang,et al.  Shaping biphoton temporal waveforms with modulated classical fields. , 2010, Physical review letters.

[26]  M Rabe,et al.  Photon beats from a single semiconductor quantum dot. , 2001, Physical review letters.

[27]  Yaron Silberberg,et al.  Temporal shaping of entangled photons. , 2005, Physical review letters.

[28]  L. Childress,et al.  Shaping quantum pulses of light via coherent atomic memory , 2004 .

[29]  A. D. Boozer,et al.  Deterministic Generation of Single Photons from One Atom Trapped in a Cavity , 2004, Science.

[30]  G. Rempe,et al.  Phase shaping of single-photon wave packets , 2009 .

[31]  K. Abbink,et al.  24 , 1871, You Can Cross the Massacre on Foot.

[32]  A. Weiner Femtosecond pulse shaping using spatial light modulators , 2000 .

[33]  G. Solomon,et al.  Interference of single photons from two separate semiconductor quantum dots. , 2010, Physical review letters.

[34]  Andrew G. Glen,et al.  APPL , 2001 .

[35]  Shengwang Du,et al.  Electro-optic modulation of single photons. , 2008, Physical review letters.

[36]  O. Painter,et al.  Investigations of a Coherently Driven Semiconductor Optical Cavity QED System , 2008, 0806.4162.

[37]  Sunao Kurimura,et al.  Time-resolved single-photon detection by femtosecond upconversion. , 2008, Optics letters.

[38]  Pascal Baldi,et al.  Soft proton exchange on periodically poled LiNbO3: A simple waveguide fabrication process for highly efficient nonlinear interactions , 2000 .

[39]  M. Fejer,et al.  Quasi-phase-matched second harmonic generation: tuning and tolerances , 1992 .

[40]  K. Srinivasan,et al.  Sub-nanosecond electro-optic modulation of triggered single photons from a quantum dot , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[41]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.