Implication of gene distribution in the bacterial chromosome for the bacterial cell factory.

As bacterial genome sequences accumulate, more and more pieces of data suggest that there is a significant correlation between the distribution of genes along the chromosome and the physical architecture of the cell, suggesting that the map of the cell is in the chromosome. Considering sequences and experimental data indicative of cell compartmentalisation, mRNA folding and turnover, as well as known structural features of protein and membrane complexes, we show that preliminary in silico analysis of whole genome sequences strongly substantiates this hypothesis. If there is a correlation between the genome sequence and the cell architecture, it must derive from some selection pressure in the organisms growing in the wild. As a consequence, the underlying constraints should be optimised in genetically modified organisms if one is to expect high product yields. Consequences in terms of gene expression for biotechnology are straightforward: knocking genes out and in genomes should not be randomly performed, but should follow the rules of chromosome organisation.

[1]  W. Baumeister,et al.  S-layer protein gene of Acetogenium kivui: cloning and expression in Escherichia coli and determination of the nucleotide sequence , 1989, Journal of bacteriology.

[2]  P. V. von Hippel,et al.  Physical properties of the Escherichia coli transcription termination factor rho. 2. Quaternary structure of the rho hexamer. , 1992, Biochemistry.

[3]  S Falkow,et al.  Copyright © 1997, American Society for Microbiology Common Themes in Microbial Pathogenicity Revisited , 2022 .

[4]  T. Henkin Control of transcription termination in prokaryotes. , 1996, Annual review of genetics.

[5]  T. Henkin Micro Review tRNA‐dircted transcription antitermination , 1994 .

[6]  T. Nyström,et al.  The fats of Escherichia coli during infancy and old age: regulation by global regulators, alarmones and lipid intermediates , 1998, Molecular microbiology.

[7]  C. Higgins,et al.  Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. , 1998, Genes & development.

[8]  A. Danchin,et al.  Comparison between the Escherichia coli and Bacillus subtilis genomes suggests that a major function of polynucleotide phosphorylase is to synthesize CDP. , 1997, DNA research : an international journal for rapid publication of reports on genes and genomes.

[9]  A Danchin,et al.  Oligonucleotide bias in Bacillus subtilis: general trends and taxonomic comparisons. , 1998, Nucleic acids research.

[10]  A. Grossman,et al.  Localization of bacterial DNA polymerase: evidence for a factory model of replication. , 1998, Science.

[11]  P. Soucaille,et al.  Physical and genetic map of the Clostridium acetobutylicum ATCC 824 chromosome , 1997, Journal of bacteriology.

[12]  R. Sparling,et al.  Regulation in the rpoS regulon of Escherichia coli. , 1998, Canadian journal of microbiology.

[13]  R. Huber,et al.  The cell envelope of the hyperthermophilic archaebacterium Pyrobaculum organotrophum consists of two regularly arrayed protein layers: three‐dimensional structure of the outer layer , 1991, Molecular microbiology.

[14]  A E Torda,et al.  Perspectives in protein-fold recognition. , 1997, Current opinion in structural biology.

[15]  C. Kurland,et al.  Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. , 1996, Journal of molecular biology.

[16]  G. Damaschun,et al.  Initial hydrophobic collapse is not necessary for folding RNase A. , 1998, Folding & design.

[17]  T. Powers,et al.  Co‐translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor , 1997, The EMBO journal.

[18]  P J Lewis,et al.  Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. , 1996, Microbiology.

[19]  A Hénaut,et al.  DosDNA occurs along yeast chromosomes, regardless of functional significance of the sequence. , 1995, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[20]  P Guerdoux-Jamet,et al.  Indigo: a World-Wide-Web review of genomes and gene functions. , 1998, FEMS microbiology reviews.

[21]  F Mandl,et al.  Dynamics in oxygen-induced changes in S-layer protein synthesis from Bacillus stearothermophilus PV72 and the S-layer-deficient variant T5 in continuous culture and studies of the cell wall composition , 1996, Journal of bacteriology.

[22]  S. Udaka,et al.  Conserved structures of cell wall protein genes among protein-producing Bacillus brevis strains , 1990, Journal of bacteriology.

[23]  H. Jakubowski Energy cost of proofreading in vivo: the charging of methionine tRNAs in Escherichia coli , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[24]  W. Bujalowski,et al.  Negative cooperativity in the binding of nucleotides to Escherichia coli replicative helicase DnaB protein. Interactions with fluorescent nucleotide analogs. , 1993, Biochemistry.

[25]  K. Sanderson,et al.  Highly plastic chromosomal organization in Salmonella typhi. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J O McInerney,et al.  Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Collado-Vides,et al.  A syntactic representation of units of genetic information--a syntax of units of genetic information. , 1991, Journal of theoretical biology.

[28]  D. Friedman,et al.  Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda boxA transcription antitermination signal. , 1990, Genes & development.

[29]  A. Danchin,et al.  Universal replication biases in bacteria , 1999, Molecular microbiology.

[30]  H. Zuber,et al.  The six fold symmetry of the B880 light-harvesting complex and the structure of the photosynthetic membranes of Rhodopseudomonas marina. , 1994, Biological chemistry Hoppe-Seyler.

[31]  T. Henkin tRNA-directed transcription antitermination. , 1994, Molecular microbiology.

[32]  A. Danchin,et al.  Evidence for horizontal gene transfer in Escherichia coli speciation. , 1991, Journal of molecular biology.

[33]  B. Weiss,et al.  The repair of uracil-containing DNA. , 1986, Basic life sciences.

[34]  O. Bârzu,et al.  Immunochemical Analysis of UMP Kinase fromEscherichia coli , 1999, Journal of bacteriology.

[35]  R. Schaaper,et al.  Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A Danchin,et al.  SubtiList: a relational database for the Bacillus subtilis genome. , 1995, Microbiology.

[37]  L. Isaksson,et al.  Accumulation of a mRNA decay intermediate by ribosomal pausing at a stop codon. , 1996, Nucleic Acids Research.

[38]  C. Carlson,et al.  A small (2.4 Mb) Bacillus cereus chromosome corresponds to a conserved region of a larger (5.3 Mb) Bacillus cereus chromosome , 1994, Molecular microbiology.

[39]  U. Lücken,et al.  Structure of the ATP synthase complex (ECF1F0) of Escherichia coli from cryoelectron microscopy. , 1990, Biochemistry.

[40]  Energy Cost of Translational Proofreading in Vivo , 1994 .

[41]  Jean-Paul Delahaye,et al.  Detection of significant patterns by compression algorithms: the case of approximate tandem repeats in DNA sequences , 1997, Comput. Appl. Biosci..

[42]  J. Volff,et al.  Genetic instability of the Streptomyces chromosome , 1998, Molecular microbiology.

[43]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[44]  V. Stewart,et al.  NasR, a novel RNA-binding protein, mediates nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader in vitro. , 1998, Journal of molecular biology.

[45]  B. Weiss,et al.  Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coli , 1988, Journal of bacteriology.

[46]  S. Iuchi,et al.  Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. , 1996, Journal of biochemistry.

[47]  A. Das,et al.  Action of an RNA site at a distance: role of the nut genetic signal in transcription antitermination by phage-lambda N gene product. , 1990, The New biologist.

[48]  P. V. von Hippel,et al.  Physical properties of the Escherichia coli transcription termination factor rho. 1. Association states and geometry of the rho hexamer. , 1992, Biochemistry.

[49]  K. Matsumoto,et al.  Phosphatidylserine synthase from bacteria. , 1997, Biochimica et biophysica acta.

[50]  Variable numbers of rRNA gene operons in Bacillus cereus strains. , 1996, FEMS microbiology letters.

[51]  H. Nilsen,et al.  Sequence specificity for removal of uracil from U·A pairs and U·G mismatches by uracil‐DNA glycosylase from Escherichia coli, and correlation with mutational hotspots , 1995, FEBS letters.

[52]  J. Errington,et al.  Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum. , 1998, Genes & development.

[53]  Journal of Biotechnology , 2022 .

[54]  M. Riley,et al.  Organization of the bacterial chromosome , 1990, Microbiological reviews.

[55]  K. Liu,et al.  Nascent RNA in transcription complexes interacts with CspE, a small protein in E. coli implicated in chromatin condensation. , 1998, Journal of molecular biology.

[56]  J. Errington,et al.  Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. , 1997, Genes & development.

[57]  I. Moszer The complete genome of Bacillus subtilis: from sequence annotation to data management and analysis , 1998, FEBS letters.

[58]  B. Sobral,et al.  Physical map of the genome of Rhizobium meliloti 1021 , 1993, Journal of bacteriology.

[59]  Guy Perrière,et al.  Correspondence discriminant analysis: a multivariate method for comparing classes of protein and nucleic acid sequences , 1996, Comput. Appl. Biosci..