High-dimensional scaling limits of piecewise deterministic sampling algorithms

Piecewise deterministic Markov processes are an important new tool in the design of Markov Chain Monte Carlo algorithms. Two examples of fundamental importance are the Bouncy Particle Sampler (BPS) and the Zig-Zag process (ZZ). In this paper scaling limits for both algorithms are determined. Here the dimensionality of the space tends towards infinity and the target distribution is the multivariate standard normal distribution. For several quantities of interest (angular momentum, first coordinate, and negative log-density) the scaling limits show qualitatively very different and rich behaviour. Based on these scaling limits the performance of the two algorithms in high dimensions can be compared. Although for angular momentum both processes require only a computational effort of $O(d)$ to obtain approximately independent samples, the computational effort for negative log-density and first coordinate differ: for these BPS requires $O(d^2)$ computational effort whereas ZZ requires $O(d)$. Finally we provide a criterion for the choice of the refreshment rate of BPS.

[1]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[2]  A. Doucet,et al.  Randomized Hamiltonian Monte Carlo as scaling limit of the bouncy particle sampler and dimension-free convergence rates , 2018, The Annals of Applied Probability.

[3]  Mark H. A. Davis Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .

[4]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[5]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[6]  Marjorie G. Hahn Central limit theorems in D[0, 1] , 1978 .

[7]  P. Fearnhead,et al.  The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data , 2016, The Annals of Statistics.

[8]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[9]  D. Freedman,et al.  A dozen de Finetti-style results in search of a theory , 1987 .

[10]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[11]  Aurélie Boisbunon The class of multivariate spherically symmetric distributions , 2012 .

[12]  Thomas House,et al.  The NuZZ: Numerical ZigZag Sampling for General Models , 2020, ArXiv.

[13]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[14]  Florent Malrieu,et al.  Long time behavior of telegraph processes under convex potentials , 2015, 1507.03503.

[15]  A. Doucet,et al.  The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.

[16]  Werner Krauth,et al.  Generalized event-chain Monte Carlo: constructing rejection-free global-balance algorithms from infinitesimal steps. , 2013, The Journal of chemical physics.

[17]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[18]  B. Jourdain,et al.  Optimal scaling for the transient phase of the random walk Metropolis algorithm: The mean-field limit , 2012, 1210.7639.

[19]  Kengo Kamatani,et al.  Efficient strategy for the Markov chain Monte Carlo in high-dimension with heavy-tailed target probability distribution , 2014, Bernoulli.

[20]  F. Bouguet,et al.  Fluctuations of the empirical measure of freezing Markov chains , 2017, 1705.02121.

[21]  G. Roberts,et al.  Ergodicity of the zigzag process , 2017, The Annals of Applied Probability.

[22]  Martin Raič,et al.  Normal Approximation by Stein ’ s Method , 2003 .

[23]  A. Doucet,et al.  Piecewise-Deterministic Markov Chain Monte Carlo , 2017, 1707.05296.

[24]  S. Meyn,et al.  Exponential and Uniform Ergodicity of Markov Processes , 1995 .

[25]  M. Marcus,et al.  Markov Processes, Gaussian Processes, and Local Times: Markov processes and local times , 2006 .

[26]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[27]  Christian P. Robert,et al.  Coordinate sampler: a non-reversible Gibbs-like MCMC sampler , 2018, Stat. Comput..

[28]  On explicit $L^2$-convergence rate estimate for piecewise deterministic Markov processes , 2020, 2007.14927.

[29]  Thomas G. Kurtz,et al.  Equivalence of Stochastic Equations and Martingale Problems , 2011 .

[30]  A. Duncan,et al.  Limit theorems for the zig-zag process , 2016, Advances in Applied Probability.

[31]  A. Doucet,et al.  Exponential ergodicity of the bouncy particle sampler , 2017, The Annals of Statistics.

[32]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[33]  David E. Carlson,et al.  Stochastic Bouncy Particle Sampler , 2016, ICML.

[34]  E A J F Peters,et al.  Rejection-free Monte Carlo sampling for general potentials. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  G. Peccati,et al.  Normal Approximations with Malliavin Calculus: From Stein's Method to Universality , 2012 .

[36]  J. Rosenthal,et al.  Complexity Bounds for MCMC via Diffusion Limits , 2014, 1411.0712.

[37]  J. Rosenthal,et al.  Scaling limits for the transient phase of local Metropolis–Hastings algorithms , 2005 .

[38]  Oswaldo Luiz V. Costa,et al.  Stability and ergodicity of piecewise deterministic Markov processes , 2008, 2008 47th IEEE Conference on Decision and Control.

[39]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .