Segre embeddings and finite semifields

Each embedded product space PG(n,q)xPG(n,q) in an (n^2+n-1)-dimensional projective space is obtained by projecting the Segre variety S"n","n","q from an n-subspace @d skew with its first secant variety (Zanella, 1996 [22]). On the other hand, when @d is skew with the (n-1)-th secant variety, it determines a semifield of order q^n^+^1 whose center contains F"q (Lavrauw, 2011 [17]). A relationship arises between a particular class of embeddings of PG(n,q)xPG(n,q) in PG(n^2+n-1,q) and semifields of the above type. For this reason, such embeddings will be called semifield embeddings. In this paper we establish this connection and prove that projectively equivalent semifield embeddings that do not exchange subspaces of different kind are related to isotopic semifields, and conversely. Exchanging the order in the product leads to the transition from a semifield to its transpose.

[1]  R. Trombetti,et al.  Maximum scattered linear sets of pseudoregulus type and the Segre variety $\mathcal{S}_{n,n}$ , 2012, 1211.3604.

[2]  G. Lunardon,et al.  Symplectic semifield spreads of PG(5, q) and the veronese surface , 2011 .

[3]  John Sheekey,et al.  On embeddings of minimum dimension of PG(n,q)×PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{PG}}(n,q , 2013, Designs, Codes and Cryptography.

[4]  Olga Polverino,et al.  Linear sets in finite projective spaces , 2010, Discret. Math..

[5]  H. Havlicek Zur Theorie Linearer Abbildungen II , 1981 .

[6]  Leonard Eugene Dickson On commutative linear algebras in which division is always uniquely possible , 1906 .

[7]  Michel Lavrauw,et al.  A geometric construction of finite semifields , 2007 .

[8]  Michel Lavrauw,et al.  Scattered Linear Sets and Pseudoreguli , 2013, Electron. J. Comb..

[9]  H. Brauner,et al.  Eine geometrische Kennzeichnung linearer Abbildungen , 1973 .

[10]  Giuseppe Marino,et al.  Infinite families of new semifields , 2009, Comb..

[11]  Michel Lavrauw,et al.  On linear sets on a projective line , 2010, Des. Codes Cryptogr..

[12]  D. Knuth Finite semifields and projective planes , 1965 .

[13]  Giuseppe Marino,et al.  Fq-pseudoreguli of PG(3, q3) and scattered semifields of order q6 , 2011, Finite Fields Their Appl..

[14]  Michel Lavrauw,et al.  Scattered spaces with respect to spreads, and eggs in finite projective spaces : Scattered subspaces with respect to spreads, and eggs in finite projective spaces , 2001 .

[15]  J. Thas,et al.  General Galois geometries , 1992 .

[16]  Werner Burau,et al.  Mehrdimensionale Projektive und Höhere Geometrie , 1961 .

[17]  M. Lavrauw Finite semifields with a large nucleus and higher secant varieties to Segre varieties , 2011 .

[18]  Olga Polverino,et al.  Semifield planes of order q4 with kernel Fq2 and center Fq , 2006, Eur. J. Comb..

[19]  Michel Lavrauw,et al.  On the isotopism classes of finite semifields , 2008, Finite Fields Their Appl..