Epidemics of Plant Diseases

[1]  J. Metz,et al.  Focus expansion in plant disease. 1. The constant rate of focus expansion. , 1988 .

[2]  R. Campbell,et al.  The ecology and physiology of the fungal mycelium , 1985 .

[3]  D. Aylor,et al.  Modeling spore dispersal in a barley crop , 1982 .

[4]  P. Sauriol,et al.  Dispersion statistics and sequential sampling plan for leaf blight caused by Botrytis squamosa in onions , 1984 .

[5]  D. J. Butt,et al.  Components of spore production in apple powdery mildew (Podosphaera leucotricha). , 1986 .

[6]  K. Leonard,et al.  Analysis of disease progress curves, gradients, and incidence-severity relationships for field and phytotron bean rust epidemics. , 1982 .

[7]  R. Rowe,et al.  Characteristics and distribution of propagules of Verticillium dahliae in Ohio potato field soils and assessment of two assay methods , 1984 .

[8]  Michael J. Jeger,et al.  Spatial components of plant disease epidemics , 1989 .

[9]  M. Jeger,et al.  Effects of plant density on progress of Phymatotrichum root rot in cotton. , 1987 .

[10]  J. P. Millard,et al.  Variability of surface temperature in agricultural fields of central California , 1982 .

[11]  B. Legg,et al.  Spore dispersal in a barley crop: A mathematical model , 1979 .

[12]  B. Shew,et al.  Spatial pattern of southern stem rot caused by Sclerotium rolfsii in six North Carolina peanut fields , 1984 .

[13]  B. J. Legg,et al.  Movement of plant pathogens in the crop canopy , 1983 .

[14]  O. Loucks,et al.  Modeling a Disease-Caused Patch Disturbance: Oak Wilt in the Midwestern United States , 1984 .

[15]  R. D. Berger,et al.  Temporal and spatial spread of citrus canker within groves. , 1984 .

[16]  M. Jeger THE INFLUENCE OF ROOT GROWTH AND INOCULUM DENSITY ON THE DYNAMICS OF ROOT DISEASE EPIDEMICS: THEORETICAL ANALYSIS. , 1987, The New phytologist.

[17]  Richard N. Mack,et al.  Controlling the spread of plant invasions: The importance of nascent foci. , 1988 .

[18]  J. Metz,et al.  Focus expansion in plant disease. III: Two experimental examples , 1988 .

[19]  C. Campbell,et al.  Spatial pattern analysis of disease severity data for alfalfa leaf spot caused primarily by Leptosphaerulina briosiana , 1986 .

[20]  H. Hanski,et al.  Cross-correlation in population dynamics and the slope of spatial variance-mean regressions , 1987 .

[21]  Raymond Louie,et al.  Temporal and spatial analysis of maize dwarf mosaic epidemics , 1987 .

[22]  Hsin-I Wu,et al.  Ecological field theory: A spatial analysis of resource interference among plants , 1985 .

[23]  J. Burdon,et al.  Host Density as a Factor in Plant Disease Ecology , 1982 .

[24]  R. D. Berger Spatial and Temporal Spread of Oat Crown Rust , 1979 .

[25]  M. Shaw Assessment of upward movement of rain splash using a fluorescent tracer method and its application to the epidemiology of cereal pathogens , 1987 .

[26]  W. Fry,et al.  Interplot interference: a model for planning field experiments with aerially disseminated pathogens , 1983 .

[27]  H. Tsutomu Mathematical equations describing the behaviour of soil bacteria , 1982 .

[28]  M. Jeger,et al.  Vector behaviour, environmental stimuli, and the dynamics of plant virus epidemics. , 1989 .

[29]  W. Fry,et al.  Models for the spread of disease: model description , 1983 .

[30]  B. Jacobs,et al.  Root distribution in space and time in Trifolium subterraneum , 1985 .

[31]  P. Waggoner The Aerial Dispersal of the Pathogens of Plant Disease , 1983 .

[32]  R. Howard Local and Long-Distance Spread of Verticillium Species Causing Wilt of Alfalfa , 1985 .

[33]  J. Kranz The Role and Scope of Mathematical Analysis and Modeling in Epidemiology , 1974 .

[34]  Alexander Grey,et al.  The Mathematical Theory of Infectious Diseases and Its Applications , 1977 .

[35]  D. Ferrin,et al.  Influence of initial density and distribution of inoculum on the epidemiology of tobacco black shank , 1986 .

[36]  明 大久保,et al.  Diffusion and ecological problems : mathematical models , 1980 .

[37]  B. Yandell,et al.  Comparison of statistical methods for studying spatial patterns of soilborne plant pathogens in the field , 1984 .

[38]  R. I. Bruck,et al.  Simulation of the spread of Phytophthora cinnamomi causing a root rot of Fraser fir in Nursery beds , 1986 .

[39]  K. G. Rohrbach,et al.  Analysis of the spatial pattern of plant pathogens and diseased plants using geostatistics. , 1988 .

[40]  M. Jeger The Relation Between Total, Infectious, and Postinfectious Diseased Plant Tissue , 1982 .

[41]  C. Mundt A Modification of Gregory's Model For Describing Plant Disease Gradients , 1985 .

[42]  D. Fulbright,et al.  Dissemination of virulent and hypovirulent forms of a marked strain of Endothia parasitica in Michigan , 1985 .

[43]  C. A. Gilligan,et al.  Analysis of the Spatial Pattern of Soilborne Pathogens , 1988 .

[44]  K. B. Johnson Analysis of Spore Dispersal Gradients ofBotrytis cinereaand Gray Mold Disease Gradients in Snap Beans , 1983 .

[45]  W. Wynn TROPIC AND TAXIC RESPONSES OF PATHOGENS TO PLANTS , 1981 .

[46]  O. Huisman INTERRELATIONS OF ROOT GROWTH DYNAMICS TO EPIDEMIOLOGY OF ROOT-INVADING FUNGI , 1982 .

[47]  Keith M. Reynolds,et al.  Modeling Epidemics of Root Diseases and Development of Simulators , 1988 .

[48]  J. Doane SPATIAL PATTERN AND DENSITY OF CTENICERA DESTRUCTOR AND HYPOLITHUS BICOLOR (COLEOPTERA: ELATERIDAE) IN SOIL IN SPRING WHEAT , 1977, The Canadian Entomologist.

[49]  R. C. Maggio,et al.  Measurement of expanding oak wilt centers in live oak , 1989 .

[50]  P. Walklate Vertical dispersal of plant pathogens by splashing. Part I: the theoretical relationship between rainfall and upward rain splash , 1989 .

[51]  M. Wolfe,et al.  Populations of Plant Pathogens: Their Dynamics and Genetics , 1987 .

[52]  M. Jeger,et al.  Effect of Quadrat and Core Sizes on Determining the Spatial Pattern of Criconemella sphaerocephalus. , 1987, Journal of nematology.

[53]  W. Bloomberg model of damping-off and root rot of Douglas-fir seedlings caused by Fusarium oxysporum , 1979 .

[54]  J. Heesterbeek,et al.  Modelling pandemics of quarantine pests and diseases: problems and perspectives , 1987 .

[55]  Daniel Simberloff,et al.  Nearest Neighbor Assessments of Spatial Confirgurations of Circles rather Than Points , 1979 .

[56]  J. Zadoks,et al.  THE ROLE OF CROP POPULATIONS AND THEIR DEPLOYMENT, ILLUSTRATED BY MEANS OF A SIMULATOR, EPIMUL76 , 1977 .

[57]  G. Macnish Mapping rhizoctonia patch in consecutive cereal crops in Western Australia , 1985 .

[58]  M. Jeger,et al.  Disease spread of non-specialised fungal pathogens from inoculated point sources in intraspecific mixed stands of cereal cultivars , 1983 .

[59]  R. Seem,et al.  Disease Incidence and Severity Relationships , 1984 .

[60]  C. Mundt,et al.  Analysis of Factors Affecting Disease Increase and Spread in Mixtures of Immune and Susceptible Plants in Computer-Simulated Epidemics , 1986 .

[61]  P. E. Waggoner Simulation of Epidemics , 1974 .

[62]  K. Barker,et al.  Relation of within-field spatial variation of plant-parasitic nematode population densities and edaphic factors. , 1985 .

[63]  A. Bainbridge,et al.  Deposition Gradients Near to a Point Source in a Barley Crop , 1984 .

[64]  Z. Punja,et al.  Concepts for modeling root infection by soilborne fungi. , 1980 .

[65]  L. Madden,et al.  Splash dispersal of Phytophthora cactorum from infected strawberry fruit , 1985 .

[66]  G. J. G. Upton,et al.  Spatial data Analysis by Example , 1985 .

[67]  D. Aylor,et al.  Escape of Peronospora tabacina spores from a field of diseased tobacco plants. , 1983 .

[68]  J. Lussenhop,et al.  Changes in spatial distribution of fungal propagules associated with invertebrate activity in soil , 1984 .

[69]  L. W. Timmer Host Range and Host Colonization, Temperature Effects, and Dispersal ofFusarium oxysporumf. sp.citri , 1982 .

[70]  D. Coates,et al.  FUNGAL POPULATION AND COMMUNITY DEVELOPMENT IN CUT BEECH LOGS: III. SPATIAL DYNAMICS, INTERACTIONS AND STRATEGIES. , 1985, The New phytologist.

[71]  S. Levin MODELS OF POPULATION DISPERSAL , 1981 .

[72]  D. Aylor Deposition gradients of urediniospores of Puccinia recondita near a source. , 1987 .

[73]  M. Jeger,et al.  Comparisons of spatial patterns of oospores of Peronosclerospora sorghi in the soil and of sorghum plants with systemic downy mildew. , 1988 .

[74]  R. N. Allen Spread of bunchy top disease in established banana plantations. , 1978 .

[75]  L. Taylor Assessing and Interpreting the Spatial Distributions of Insect Populations , 1984 .

[76]  R. Baker Inoculum Potential and Soilborne Pathogens: The Essence of Every Model is Within the Frame , 1981 .

[77]  Steven R. Dunbar,et al.  Travelling wave solutions of diffusive Lotka-Volterra equations , 1983 .

[78]  D. A. Klein,et al.  Soil fungi: Measurement of hyphal length , 1984 .

[79]  R. G. Mcguire,et al.  Asiatic citrus canker: spatial and temporal spread in simulated new planting situations in Argentina , 1988 .

[80]  V. A. Dirks,et al.  Bacterial stem rot of greenhouse tomato: etiology, spatial distribution, and the effect of high humidity , 1987 .

[81]  L. Madden,et al.  Evaluation of Tests for Randomness of Infected Plants , 1982 .

[82]  W. Bloomberg The Epidemiology of Forest Nursery Diseases , 1985 .

[83]  Richard O. Gilbert,et al.  Kriging for estimating spatial pattern of contaminants: Potential and problems , 1985, Environmental monitoring and assessment.

[84]  D. Mackenzie,et al.  The spread of a powdery mildew of peach. , 1980 .

[85]  B. Fitt,et al.  Spore dispersal in relation to epidemic models , 1986 .

[86]  M. Schroth,et al.  Spatial-Temporal Colonization Patterns of a Rhizobacterium on Underground Organs of Potato , 1987 .

[87]  P. Manion,et al.  Spatial distribution of declining urban maples , 1984 .

[88]  B. Boag,et al.  Aggregation of plant parasitic nematodes and Taylor's power law , 1984 .

[89]  O. Diekmann Dynamics in bio-mathematical perspective , 1986 .

[90]  S. Itoh In situ MEASUREMENT OF ROOTING DENSITY BY MICRO·RHIZOTRON , 1985 .

[91]  M. J. Jeger,et al.  Analysing epidemics in time and space , 1983 .

[92]  J. Zadoks,et al.  EPIMUL, a simulator of foci and epidemics in mixtures, multilines, and mosaics of resistant and suscptible plants , 1977 .

[93]  D. Aylor,et al.  A framework for examining inter-regional aerial transport of fungal spores , 1986 .

[94]  P. Little,et al.  Transport and capture of particles by vegetation. , 1981 .

[95]  G. De’ath,et al.  THE SPREAD OF GLOMUS FASCICULATUM THROUGH ROOTS OF TRIFOLIUM SUBTERRANEUM AND LOLIUM RIGIDUM , 1985 .

[96]  R. N. Carter,et al.  Epidemic models used to explain biogeographical distribution limits , 1981, Nature.

[97]  F. B. Smith Meteorological factors influencing the dispersion of airborne diseases , 1983 .

[98]  S. Alcorn,et al.  Macrophomina phaseolina: spatial patterns in a cultivated soil and sampling strategies , 1987 .

[99]  B. Scholte,et al.  Dissemination of mildew spores in a glasshouse , 1983 .

[100]  D. J. Royle,et al.  Spatial distributions of Septoria nodorum and S. tritici within crops of winter wheat , 1987 .

[101]  D. Eamus,et al.  Determination of Water, Solute and Turgor Potentials of Mycelium of Various Basidiomycete Fungi causing Wood Decay , 1984 .

[102]  J. Heltshe,et al.  Spatial pattern detection using quadrat samples , 1984 .

[103]  W. Jacobi,et al.  Analysis of disease progression and the randomness of occurrence of infected plants during tobacco black shank epidemics , 1984 .

[104]  E. Menges,et al.  Predictive equations for local spread of oak wilt in Southern Wisconsin , 1985 .

[105]  S. Pennypacker,et al.  Distribution of hypocotyl rot caused in snapbean by Rhizoctonia solani. , 1980 .

[106]  M. Jeger,et al.  Analysis of spatial patterns in Sorghum downy mildew with Morisita's index of dispersion , 1986 .

[107]  J. A. Quinn,et al.  Computer graphics simulation of growth and sporulation of Erysiphe polygoni , 1986 .

[108]  C. S. Lin,et al.  AN EXAMINATION OF FIVE SAMPLING METHODS UNDER RANDOM AND CLUSTERED DISEASE DISTRIBUTIONS USING SIMULATION , 1979 .

[109]  Francis Fujioka Estimating Wildland Fire Rate of Spread in a Spatially Nonuniform Environment , 1985 .

[110]  Alastair H. Fitter,et al.  Functional significance of root morphology and root system architecture , 1985 .

[111]  J. W. Biggar,et al.  Geostatistical theory and application to variability of some agronomical properties , 1983 .

[112]  C. Gilligan Zone of potential infection between host roots and inoculum units of Gaeumannomyces graminis. , 1980 .

[113]  P. Teng A Comparison of Simulation Approaches to Epidemic Modeling , 1985 .

[114]  D. E. Gill Spatial Patterning of Pines and Oaks in the New Jersey Pine Barrens , 1975 .

[115]  Joe T. Ritchie,et al.  Root Observations Using A Video Recording System In Mini‐Rhizotrons1 , 1983 .

[116]  A. Roelfs,et al.  The concept and measurement of phenotypic diversity in Puccinia graminis on wheat , 1987 .

[117]  J. Alldredge,et al.  Estimated distances for infection of wheat roots by Gaeumannomyces graminis var. tritici in soils suppressive and conducive to take-all , 1985 .

[118]  H. Hayhoe,et al.  ANALYSIS OF A DIFFUSION MODEL FOR PLANT ROOT GROWTH AND AN APPLICATION TO PLANT SOIL‐WATER UPTAKE , 1981 .

[119]  D. L. Haynes,et al.  Simulating the spatiotemporal dynamics of the cereal leaf beetle in a regional crop system , 1985 .

[120]  W. Fry,et al.  Models for the Spread of Plant Disease: Some Experimental Results , 1983 .

[121]  H. Dillard,et al.  Relationship between sclerotial spatial pattern and density of Sclerotinia minor and the incidence of lettuce drop , 1985 .