A finite element formulation for nonlinear incompressible elastic and inelastic analysis

[1]  Milos Kojic,et al.  The ‘effective‐stress‐function’ algorithm for thermo‐elasto‐plasticity and creep , 1987 .

[2]  Klaus-Jürgen Bathe,et al.  Finite elements in CAD and ADINA , 1986 .

[3]  M. Bercovier,et al.  Numerical Evaluation of Finite Element Methods for Rubber Parts , 1986 .

[4]  K. Bathe,et al.  Studies of finite element procedures—stress band plots and the evaluation of finite element meshes , 1986 .

[5]  M. Bercovier An Optimal 3D Finite Element for Incompressible Media , 1986 .

[6]  Mohamed S. Gadala,et al.  Numerical solutions of nonlinear problems of continua—II. Survey of incompressibility constraints and software aspects , 1986 .

[7]  J. R. Stafford,et al.  SOME ASPECTS OF RUBBER COMPOSITE FINITE ELEMENT ANALYSIS , 1985 .

[8]  Klaus-Jürgen Bathe,et al.  Studies of finite element procedures—On mesh selection , 1985 .

[9]  Anil Chaudhary,et al.  A SOLUTION METHOD FOR PLANAR AND AXISYMMETRIC CONTACT PROBLEMS , 1985 .

[10]  Alan Needleman,et al.  Fully Plastic Crack Problems, Part 1: Solutions by a Penalty Method , 1984 .

[11]  C. G. Floyd,et al.  The Determination of Stresses Using a Combined Theoretical and Experimental Analysis Approach , 1984 .

[12]  B. Häggblad,et al.  Large strain solutions of rubber components , 1983 .

[13]  Noboru Kikuchi,et al.  Finite element methods for constrained problems in elasticity , 1982 .

[14]  R. L. Sani,et al.  Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements , 1982 .

[15]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[16]  Robert L. Lee,et al.  The cause and cure (!) of the spurious pressures generated by certain fem solutions of the incompressible Navier‐Stokes equations: Part 2 , 1981 .

[17]  Michel Bercovier,et al.  A finite element method for the analysis of rubber parts, experimental and analytical assessment , 1981 .

[18]  S. G. Lekhnit︠s︡kiĭ Theory of elasticity of an anisotropic body , 1981 .

[19]  Herbert Reismann,et al.  Elasticity: Theory and Applications , 1980 .

[20]  L. Treloar Dilation of rubber on extension , 1978 .

[21]  D. Rooke,et al.  The compendium of stress intensity factors , 1978, International Journal of Fracture.

[22]  M. Bercovier Perturbation of mixed variational problems. Application to mixed finite element methods , 1978 .

[23]  H. G. deLorenzi,et al.  On the use of 2D isoparametric elements for calculations in the fully plastic range , 1977, International Journal of Fracture.

[24]  Michel Fortin,et al.  An analysis of the convergence of mixed finite element methods , 1977 .

[25]  Ray W. Ogden,et al.  Volume changes associated with the deformation of rubber-like solids , 1976 .

[26]  John Argyris,et al.  Large natural strains and some special difficulties due to non-linearity and incompressibility in finite elements , 1974 .

[27]  Ernst Friedrich Göbel Rubber springs design , 1974 .

[28]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[29]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[30]  I. Babuska The Finite Element Method with Penalty , 1973 .

[31]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[32]  E. Dill,et al.  An Introduction to the Mechanics of Solids , 1972 .

[33]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[34]  Jd Landes,et al.  THE J INTEGRAL AS A FRACTURE CRITERION , 1972 .

[35]  John R. Rice,et al.  The line spring model for surface flaws. , 1972 .

[36]  R. Penn Volume Changes Accompanying the Extension of Rubber , 1970 .

[37]  J. T. Oden,et al.  Numerical analysis of finite axisymmetric deformations of incompressible elastic solids of revolution , 1970 .

[38]  Samuel W. Key,et al.  A variational principle for incompressible and nearly-incompressible anisotropic elasticity , 1969 .

[39]  Karl S. Pister,et al.  On a variational theorem for incompressible and nearly-incompressible orthotropic elasticity , 1968 .

[40]  R. Hill,et al.  On constitutive inequalities for simple materials—I , 1968 .

[41]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[42]  A. Mendelson Plasticity: Theory and Application , 1968 .

[43]  L. Herrmann Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem , 1965 .

[44]  R. Plunkett,et al.  Formulas for Stress and Strain , 1965 .

[45]  E. Wilkes ON THE STABILITY OF A CIRCULAR TUBE UNDER END THRUST , 1955 .

[46]  R. Hill The mathematical theory of plasticity , 1950 .

[47]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[48]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[49]  R. Rivlin Large elastic deformations of isotropic materials. III. Some simple problems in cyclindrical polar co-ordinates , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.