A novel non-iterative algorithm for low-multilinear-rank tensor approximation
暂无分享,去创建一个
[1] L. Lathauwer,et al. On the best low multilinear rank approximation of higher-order tensors , 2010 .
[2] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[3] Pierre Comon,et al. Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.
[4] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[5] Reinhold Schneider,et al. Low rank tensor recovery via iterative hard thresholding , 2016, ArXiv.
[6] Pierre Comon,et al. A Finite Algorithm to Compute Rank-1 Tensor Approximations , 2016, IEEE Signal Processing Letters.
[7] Florian Roemer,et al. Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems , 2008, IEEE Transactions on Signal Processing.
[8] Paul Van Dooren,et al. Jacobi Algorithm for the Best Low Multilinear Rank Approximation of Symmetric Tensors , 2013, SIAM J. Matrix Anal. Appl..
[9] Rafal Zdunek,et al. Electromyography and mechanomyography signal recognition: Experimental analysis using multi-way array decomposition methods , 2017 .
[10] Raf Vandebril,et al. A New Truncation Strategy for the Higher-Order Singular Value Decomposition , 2012, SIAM J. Sci. Comput..
[11] Gérard Favier,et al. An iterative hard thresholding algorithm with improved convergence for low-rank tensor recovery , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).
[12] Gérard Favier,et al. Low-Rank Tensor Recovery using Sequentially Optimal Modal Projections in Iterative Hard Thresholding (SeMPIHT) , 2017, SIAM J. Sci. Comput..
[13] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.