Algorithms for Propagating Uncertainty Across Heterogeneous Domains

We address an important research area in stochastic multiscale modeling, namely, the propagation of uncertainty across heterogeneous domains characterized by partially correlated processes with vastly different correlation lengths. This class of problems arises very often when computing stochastic PDEs and particle models with stochastic/stochastic domain interaction but also with stochastic/deterministic coupling. The domains may be fully embedded, adjacent, or partially overlapping. The fundamental open question we address is the construction of proper transmission boundary conditions that preserve global statistical properties of the solution across different subdomains. Often, the codes that model different parts of the domains are black box and hence a domain decomposition technique is required. No rigorous theory or even effective empirical algorithms have yet been developed for this purpose, although interfaces defined in terms of functionals of random fields (e.g., multipoint cumulants) can overco...

[1]  Sergei Izvekov,et al.  Microscopic derivation of particle-based coarse-grained dynamics. , 2013, The Journal of chemical physics.

[2]  Max D. Gunzburger,et al.  An Optimization-Based Domain Decomposition Method for the Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[3]  Howard C. Elman,et al.  H(div) preconditioning for a mixed finite element formulation of the diffusion problem with random data , 2009, Math. Comput..

[4]  Ellad B. Tadmor,et al.  Modeling Materials: Continuum, Atomistic and Multiscale Techniques , 2011 .

[5]  George Em Karniadakis,et al.  Direct construction of mesoscopic models from microscopic simulations. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Andrew J Majda,et al.  Stochastic and mesoscopic models for tropical convection , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  A. Sarkar,et al.  Domain decomposition of stochastic PDEs: Theoretical formulations , 2009 .

[8]  Daniel M Tartakovsky,et al.  PDF equations for advective-reactive transport in heterogeneous porous media with uncertain properties. , 2011, Journal of contaminant hydrology.

[9]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[10]  Howard C. Elman,et al.  Reduced Basis Collocation Methods for Partial Differential Equations with Random Coefficients , 2013, SIAM/ASA J. Uncertain. Quantification.

[11]  Andrew J Majda,et al.  Coarse-grained stochastic models for tropical convection and climate , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[13]  Daniele Venturi,et al.  On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate , 2006, Journal of Fluid Mechanics.

[14]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[15]  D Venturi,et al.  Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Andrew J. Majda,et al.  Intermittency, metastability and coarse graining for coupled deterministic–stochastic lattice systems , 2006 .

[17]  Daniel M. Tartakovsky,et al.  Exact PDF equations and closure approximations for advective-reactive transport , 2013, J. Comput. Phys..

[18]  Luca Gerardo-Giorda,et al.  Analysis and Optimization of Robin-Robin Partitioned Procedures in Fluid-Structure Interaction Problems , 2010, SIAM J. Numer. Anal..

[19]  Daniel M. Tartakovsky,et al.  A Two-Scale Nonperturbative Approach to Uncertainty Analysis of Diffusion in Random Composites , 2004, Multiscale Model. Simul..

[20]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[21]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[22]  Thomas Hagstrom,et al.  Numerical Experiments on a Domain Decomposition Algorithm for Nonlinear Elliptic Boundary Value Problems , 1988 .

[23]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[24]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[25]  Qingping Deng Timely Communicaton: An Analysis for a Nonoverlapping Domain Decomposition Iterative Procedure , 1997, SIAM J. Sci. Comput..

[26]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[27]  Allen I. Fleishman A method for simulating non-normal distributions , 1978 .

[28]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[29]  R. Sundaram A First Course in Optimization Theory: Bibliography , 1996 .

[30]  G. Karniadakis,et al.  Microflows and Nanoflows: Fundamentals and Simulation , 2001 .

[31]  D. Venturi A fully symmetric nonlinear biorthogonal decomposition theory for random fields , 2011 .

[32]  Martin J. Gander,et al.  Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation , 2003, SIAM J. Numer. Anal..

[33]  Heyrim Cho,et al.  Karhunen-Loève expansion for multi-correlated stochastic processes , 2013 .

[34]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[35]  Jinchao Xu,et al.  Some Nonoverlapping Domain Decomposition Methods , 1998, SIAM Rev..

[36]  Pavel B. Bochev,et al.  Development of an Optimization-Based Atomistic-to-Continuum Coupling Method , 2013, LSSC.

[37]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[38]  Shu Takagi,et al.  Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[40]  Daniel M. Tartakovsky,et al.  Mean Flow in composite porous media , 2000 .

[41]  Daniele Venturi,et al.  Stochastic bifurcation analysis of Rayleigh–Bénard convection , 2010, Journal of Fluid Mechanics.

[42]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[43]  Daniel M. Tartakovsky,et al.  Random domain decomposition for flow in heterogeneous stratified aquifers , 2003 .

[44]  Daniele Venturi,et al.  Wick–Malliavin approximation to nonlinear stochastic partial differential equations: analysis and simulations , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[46]  Daniel M. Tartakovsky,et al.  Uncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids , 2010, J. Comput. Phys..

[47]  George E. Karniadakis,et al.  Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..

[48]  Singiresu S. Rao Game theory approach for multiobjective structural optimization , 1987 .

[49]  Heinrich von Stackelberg Market Structure and Equilibrium , 2010 .