Measuring fluorescence to track a quantum emitter's state: a theory review

We review the continuous monitoring of a qubit through its spontaneous emission, at an introductory level. Contemporary experiments have been able to collect the fluorescence of an artificial atom in a cavity and transmission line, and then make measurements of that emission to obtain diffusive quantum trajectories in the qubit's state. We give a straightforward theoretical overview of such scenarios, using a framework based on Kraus operators derived from a Bayesian update concept; we apply this flexible framework across common types of measurements including photodetection, homodyne, and heterodyne monitoring and illustrate its equivalence to the stochastic master equation formalism throughout. Special emphasis is given to homodyne (phase-sensitive) monitoring of fluorescence. The examples we develop are used to illustrate basic methods in quantum trajectories, but also to introduce some more advanced topics of contemporary interest, including the arrow of time in quantum measurement, and trajectories following optimal measurement records derived from a variational principle. The derivations we perform lead directly from the development of a simple model to an understanding of recent experimental results.

[1]  Todd A. Brun,et al.  A simple model of quantum trajectories , 2002 .

[2]  M. Kus,et al.  Measures and dynamics of entangled states , 2005, quant-ph/0505162.

[3]  S. Girvin,et al.  Cavity-assisted quantum bath engineering. , 2012, Physical review letters.

[4]  Barchielli Measurement theory and stochastic differential equations in quantum mechanics. , 1986, Physical review. A, General physics.

[5]  Hawking Arrow of time in cosmology. , 1985, Physical review. D, Particles and fields.

[6]  Alexandre Blais,et al.  Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect , 2007, 0709.4264.

[7]  Pérès,et al.  Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  Andrew N. Jordan,et al.  Linear feedback stabilization of a dispersively monitored qubit , 2017, 1705.03878.

[9]  Francesco Petruccione,et al.  Stochastic wave-function approach to the calculation of multitime correlation functions of open quantum systems , 1997 .

[10]  Leigh S. Martin,et al.  Multitime correlators in continuous measurement of qubit observables , 2017, 1710.05249.

[11]  A. Jordan,et al.  Chaos in continuously monitored quantum systems: An optimal-path approach , 2018, Physical Review A.

[12]  Joel L. Lebowitz,et al.  Boltzmann's Entropy and Time's Arrow , 1993 .

[13]  P. Rouchon,et al.  Anatomy of fluorescence: quantum trajectory statistics from continuously measuring spontaneous emission , 2015, 1511.06677.

[14]  M. Scully,et al.  Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations , 2003 .

[15]  Hendra Ishwara Nurdin,et al.  Quantum filtering for systems driven by fields in single-photon states or superposition of coherent states , 2012 .

[16]  K. Murch,et al.  Weak Measurement and Feedback in Superconducting Quantum Circuits , 2015, 1507.04617.

[17]  C. Macklin,et al.  Observing single quantum trajectories of a superconducting quantum bit , 2013, Nature.

[18]  Barry C. Sanders,et al.  Operational formulation of homodyne detection , 2004 .

[19]  K. Murch,et al.  Characterizing a Statistical Arrow of Time in Quantum Measurement Dynamics. , 2018, Physical review letters.

[20]  H. Carmichael Statistical Methods in Quantum Optics 1 , 1999 .

[21]  Ri-Gui Zhou,et al.  Designing novel reversible BCD adder and parallel adder/subtraction using new reversible logic gates , 2012 .

[22]  Ognyan Oreshkov,et al.  Weak measurements are universal. , 2005, Physical review letters.

[23]  M. Naghiloo,et al.  Introduction to Experimental Quantum Measurement with Superconducting Qubits , 2019, 1904.09291.

[24]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[25]  A. Jordan,et al.  Uncollapsing the wavefunction by undoing quantum measurements , 2009, 0906.3468.

[26]  K. Mølmer,et al.  Prediction and retrodiction for a continuously monitored superconducting qubit. , 2014, Physical review letters.

[27]  Franco Nori,et al.  Quantum feedback: theory, experiments, and applications , 2014, 1407.8536.

[28]  Howard Wiseman,et al.  Quantum physics: Death by experiment for local realism , 2015, Nature.

[29]  P. Dirac The Quantum Theory of the Emission and Absorption of Radiation , 1927 .

[30]  Albert Einstein,et al.  Strahlungs-Emission und ­Absorption nach der Quantentheorie , 1916 .

[31]  J. Gough The Collapse Before a Quantum Jump Transition , 2019, 1904.07890.

[32]  A. Jordan,et al.  Mapping the optimal route between two quantum states , 2014, Nature.

[33]  K. Jacobs Quantum Measurement Theory and its Applications , 2014 .

[34]  K. Funo,et al.  Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system , 2017, Nature Communications.

[35]  M. Devoret,et al.  The Josephson mixer: a Swiss army knife for microwave quantum optics , 2012 .

[36]  H. Wiseman,et al.  Quantum State Smoothing. , 2015, Physical review letters.

[37]  R. Chaves,et al.  Quantum computing with incoherent resources and quantum jumps. , 2011, Physical review letters.

[38]  Peter W. Milonni,et al.  Why spontaneous emission , 1984 .

[39]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[40]  A. Jordan,et al.  Fluctuation theorems for continuous quantum measurements and absolute irreversibility , 2018, Physical Review A.

[41]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[42]  H. Wiseman,et al.  Completely positive quantum trajectories with applications to quantum state smoothing , 2019, 1909.12455.

[43]  K. Mølmer,et al.  How many atoms get excited when they decay? , 2013, 1702.08824.

[45]  N. Gisin,et al.  The quantum-state diffusion model applied to open systems , 1992 .

[46]  Richard Phillips Feynman Brownian movement , 2009, Veterinary Record.

[47]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[48]  P. Knight,et al.  Quantum State Diffusion Theory and a Quantum Jump Experiment , 1993 .

[49]  H. Wiseman,et al.  Quantum state smoothing: why the types of observed and unobserved measurements matter , 2019, New Journal of Physics.

[50]  Milburn,et al.  Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[51]  G. Rempe Atoms in an optical cavity: quantum electrodynamics in confined space , 1993 .

[52]  E. Wigner,et al.  Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie , 1930 .

[53]  Ian Percival,et al.  Quantum State Diffusion , 1998 .

[54]  Cyril Elouard,et al.  Efficient Quantum Measurement Engines. , 2018, Physical review letters.

[55]  A. Carvalho,et al.  Observing different quantum trajectories in cavity QED , 2011, 1102.1047.

[56]  K. Murch,et al.  Mapping quantum state dynamics in spontaneous emission , 2015, Nature Communications.

[57]  B. Huard,et al.  Author Correction: Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing , 2018, Nature Communications.

[58]  A. Jordan,et al.  Prediction and Characterization of Multiple Extremal Paths in Continuously Monitored Qubits , 2016, 1612.07861.

[59]  Alexander N. Korotkov Quantum Bayesian approach to circuit QED measurement with moderate bandwidth , 2016 .

[60]  H. M. Wiseman Quantum trajectories and quantum measurement theory , 1996 .

[61]  K. Mølmer,et al.  Homodyne monitoring of postselected decay , 2017, 1705.04287.

[62]  R. J. Schoelkopf,et al.  Phase-preserving amplification near the quantum limit with a Josephson ring modulator , 2009, Nature.

[63]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[64]  Quantum physics: Watching the wavefunction collapse , 2013, Nature.

[65]  P. Knight,et al.  Radiation Reaction and Radiative Frequency Shifts , 1973 .

[66]  A. Jordan,et al.  Arrow of Time for Continuous Quantum Measurement. , 2016, Physical review letters.

[67]  Christine Silberhorn,et al.  Detecting quantum light , 2007 .

[68]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[69]  C. Jarzynski,et al.  Path-integral analysis of fluctuation theorems for general Langevin processes , 2006, cond-mat/0605471.

[70]  Kurt Jacobs,et al.  A straightforward introduction to continuous quantum measurement , 2006, quant-ph/0611067.

[71]  A. Jordan,et al.  Time reversal symmetry of generalized quantum measurements with past and future boundary conditions , 2018, Quantum Studies: Mathematics and Foundations.

[72]  E. Lutz,et al.  Heat and Work Along Individual Trajectories of a Quantum Bit. , 2017, Physical review letters.

[73]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[74]  M. Clusel,et al.  The role of quantum measurement in stochastic thermodynamics , 2016, 1607.02404.

[75]  L. Mandel,et al.  Theory of resonance fluorescence , 1976 .

[76]  M. Devoret,et al.  Quantum microwaves / Micro-ondes quantiques Introduction to parametric amplification of quantum signals with Josephson circuits Introduction à l ’ amplification paramétrique de signaux quantiques par les circuits , 2016 .

[77]  B. R. Mollow Power spectrum of light scattered by two-level systems , 1969 .

[78]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[79]  H. M. Wiseman,et al.  Feedback-stabilization of an arbitrary pure state of a two-level atom , 2001 .

[80]  A. Buchleitner,et al.  Entanglement dynamics in open two-qubit systems via diffusive quantum trajectories. , 2010, Physical review letters.

[81]  M. T. Cunha,et al.  Continuous quantum error correction through local operations , 2010, 1009.4744.

[83]  A. Jordan,et al.  Stochastic path-integral formalism for continuous quantum measurement , 2015, 1507.07016.

[84]  Pierre Rouchon,et al.  Efficient quantum filtering for quantum feedback control , 2015 .

[85]  Wojciech H. Zurek,et al.  Conditional quantum dynamics with several observers , 2004 .

[86]  G. Leuchs Squeezing the quantum fluctuations of light , 1988 .

[87]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[88]  P. Rouchon,et al.  Observing quantum state diffusion by heterodyne detection of fluorescence , 2015, 1511.01415.

[89]  A. Auffèves,et al.  An autonomous quantum machine to measure the thermodynamic arrow of time , 2018, npj Quantum Information.

[90]  Eliahu Cohen,et al.  Introduction to Weak Measurements and Weak Values , 2013 .

[91]  Masahito Ueda,et al.  Simultaneous continuous measurement of photon-counting and homodyne detection on a free photon field: dynamics of state reduction and the mutual influence of measurement backaction , 2012, 1212.0968.

[92]  Alexia Auffeves,et al.  Extracting Work from Quantum Measurement in Maxwell's Demon Engines. , 2017, Physical review letters.

[93]  Pierre Rouchon,et al.  Observing a quantum Maxwell demon at work , 2017, Proceedings of the National Academy of Sciences.

[94]  Leigh S. Martin,et al.  Quantum dynamics of simultaneously measured non-commuting observables , 2016, Nature.

[95]  J. Gough The Gisin-Percival stochastic Schrödinger equation from standard quantum filtering theory , 2017, 1710.01413.

[96]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[97]  Action principle for continuous quantum measurement , 2013, 1305.5201.

[98]  A. Jordan,et al.  Quantum caustics in resonance fluorescence trajectories , 2016, 1612.03189.

[99]  G. Johansson,et al.  Steady-State Generation of Wigner-Negative States in One-Dimensional Resonance Fluorescence. , 2018, Physical review letters.

[100]  Milburn,et al.  Quantum theory of field-quadrature measurements. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[101]  Andrei Sobolev,et al.  Continuous measurement of canonical observables and limit Stochastic Schrodinger equations , 2004 .

[102]  Kurt Jacobs,et al.  Information-tradeoff relations for finite-strength quantum measurements , 2001 .

[103]  S. Hacohen-Gourgy Dynamics of simultaneously measured non-commuting observables , 2017 .

[104]  N. Gisin Quantum measurements and stochastic processes , 1984 .

[105]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[106]  H. Carmichael An open systems approach to quantum optics , 1993 .

[107]  L. Di'osi,et al.  Continuous quantum measurement and itô formalism , 1988, 1812.11591.

[108]  V. Vedral,et al.  Physically realizable entanglement by local continuous measurements , 2010, 1006.1233.

[109]  J. Anders,et al.  Energetic footprints of irreversibility in the quantum regime , 2019, Communications Physics.

[110]  Milburn,et al.  Quantum-mechanical model for continuous position measurements. , 1987, Physical review. A, General physics.

[111]  B. Huard,et al.  Observing interferences between past and future quantum states in resonance fluorescence. , 2013, Physical review letters.

[112]  I. Siddiqi,et al.  Incoherent Qubit Control Using the Quantum Zeno Effect. , 2017, Physical review letters.

[113]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[114]  Nicolas Gisin,et al.  Quantum diffusions, quantum dissipation and spin relaxation , 1992 .

[115]  Daniel Kleppner,et al.  Cavity quantum electrodynamics , 1986 .

[116]  A. Carvalho,et al.  Distant entanglement protected through artificially increased local temperature , 2011, 1101.2688.

[117]  Gerard J. Milburn,et al.  Qubit models of weak continuous measurements: markovian conditional and open-system dynamics , 2017, 1710.09523.

[118]  R. Schoelkopf,et al.  To catch and reverse a quantum jump mid-flight , 2018, Nature.

[119]  B. Huard,et al.  Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing , 2017, Nature Communications.

[120]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[121]  A. Jordan,et al.  Undoing a weak quantum measurement of a solid-state qubit. , 2006, Physical review letters.